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ABSTRACT 

The size, cost, and slow rate of change of Department of Defense (DOD) 

Information Technology (IT) systems make introducing new capabilities challenging. 

Without considering the whole system and its environment, design decisions may result in 

unintended operational and financial impacts, often not visible until later testing. These 

complex systems and their interactions are not cheap to maintain, impacting intellectual, 

programmatic, and organizational resources. Precise behavioral modeling offers a way to 

assess architectural design decisions prior to, during, and after implementation to mitigate 

the impacts of complexity, but this modeling cannot estimate those design decisions’ 

effort and cost. This research introduces a methodology to extract Unadjusted Function 

Point (UFP) counts from architectural behavioral models utilizing a framework called 

Monterey Phoenix (MP), lightweight formal methods, and high-level pseudocode for use 

in cost estimation models such as COCOMO II. Additionally, integration test estimates 

are informed by extracts of MP model event traces. These unambiguous, executable 

architecture models and their views can be inspected and revised in order to facilitate 

communication with stakeholders, reduce the potential for software failure, and lower 

implementation costs. 
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I. OVERVIEW 

The Department of Defense (DOD) is in the process of transforming its stove-

piped, software-intensive systems into integrated, adaptable, cyber-hardened systems that 

leverage software, system, and system-of-systems (SoS) engineering techniques. 

Historically, there have been significant but often disjointed efforts to develop 

architectural descriptions that can allow consistent design and analysis of new and legacy 

systems. Architectural design and analysis are part of a powerful mechanism that 

captures design decisions early in the process, so they can be assessed and modified 

without incurring the unnecessary costs of incorrect implementation.  

Architectural design decisions are often captured through a system-by-system 

analysis, using a spectrum of architecture description representations from natural 

language to formal notations. For this reason, inconsistent architecture descriptions of the 

system and the environment require analyzing decisions through manually intensive 

methods, such as inspections and reviews, since the lack of consistent description 

methods makes automated analysis almost impossible. System development and software 

architecture development efforts are often implemented as if they were unrelated, with 

incomplete or duplicative results, yielding technically and programmatically 

unsustainable outcomes.  

This is an unfortunate state of affairs because architecture matters. According to 

Rozanski and Woods, “every system has an architecture, whether or not it is documented 

and understood” [1, p. 20]. Architecture deserves the attention of technical and 

programmatic decision-makers because it can capture design decisions that allows them 

to verify socio-technical assertions. Without accurate and complete architectural 

descriptions, the DOD cannot determine disposition strategies for legacy systems (e.g., 

migrate, sunset), system-development strategies (e.g., buy/adopt/build), interoperability 

and integration strategies for incremental implementation that inform total cost of 

ownership (TCO) and return on investment (ROI), and meaningful engineering metrics 
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that inform forecasting (e.g., estimates of new services or system elements) for future 

increments of a system’s development.  

Stakeholders should have complementary interests, but due to incomplete or 

insufficient architecture representations, their interests often conflict. For example, a 

software engineer may expect behaviors to be represented by UML sequence diagrams, 

Agile user stories, high-level pseudocode, or implemented code. A SoS engineer, on the 

other hand, may want to see functional flow block diagram FFBD boxes and arrows and 

to search for the conditions that result in emergent behavior. Cost analysts review the 

resourcing implications for each instance of system and environment architecture, 

leveraging a spectrum of estimation strategies from Excel through parametric models. 

Each user wants the system to work from his or her perspective, independent of the 

healthy tensions between cost and design [2].  

To meet these multi-stakeholder challenges, organizations expend significant 

resources to develop architecture descriptions of an individual system, with only a 

cursory view of the impact to and from the environment with which it interacts. 

Architecture descriptions must assist in capturing design decisions, provide a framework 

to reason about those decisions, and then facilitate analyses to verify assertions early 

enough in the design process to prevent incurring the costs of incorrect implementation. 

Cost must be considered a necessary attribute of an architecture element, and software 

must not be considered an afterthought. These practical requirements can be satisfied by 

early and consistent behavioral modeling and the extraction of statistics from executable 

architecture models that inform cost. 

A. RESEARCH GOAL 

The goal of this research is to introduce a newly developed methodology, called 

ThreeMetrics, which extracts unadjusted function point (UFP) counts from discrete 

architecture behavioral models; these models were created from the Monterey Phoenix 

(MP) modeling language and framework for use in cost estimation models such as 

Constructive Cost Model II (COCOMO II), protected by copyright [3]–[5]. Additionally, 

this research discusses the extraction of scenarios (use cases) from the MP model that can 
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inform distinct integration test cases and the presentation of multiple views for 

communication with a spectrum of stakeholders. The name ThreeMetrics represents these 

three metrics: UFP count, use cases to inform integration test estimates, and views of the 

architecture.  

The ThreeMetrics methodology contributes to technical and programmatic 

decision making by providing the ability to refine and analyze executable architecture 

models beginning at the earliest design stages.  

B. SIGNIFICANCE OF THE PROBLEM AND ITS POTENTIAL IMPACT 

Unlike private industry, DOD organizational strategies and resourcing are not 

directly governed by market influences. A product’s time to market and internal 

programmatic efficiencies do not determine whether a government organization survives 

through the next quarter.  

Senior DOD decision-makers may not understand the mechanics of architecture 

modeling, but they do understand TCO, ROI, cost savings, cost avoidance, and 

efficiencies. They understand the need for data that inform their decisions to invest in 

specific implementations and to quickly and accurately assess whether the ROI is 

warranted. Decision makers also understand the operational impact on service men and 

women no matter whether they are still part of the DOD or have transitioned to veteran 

status.  

In the absence of strong influences forcing consistent cultural change across the 

DOD, enforcement mechanisms, informed by data that are objective, repeatable, timely, 

and understandable, offer valuable alternatives.  

C. SPECIFIC GOALS OF THIS RESEARCH 

The ThreeMetrics methodology employs architecture modeling of the behaviors 

of a software-intensive system, the environment, and the system interacting with the 

environment, in order to inform technical and investment decisions. This research 

accomplishes the following: 



 4 

• Presents a methodology to extract an UFP count from MP’s executable 
architecture models for use in software cost estimation  

• Leverages precise behavioral modeling using MP to assess architecture design 
decisions and their impacts 

• Relates architecture modeling to resourcing through analysis of behaviors and 
UFP counts, leveraging complexity and size metrics such as the data element 
type (DET) 

• Extracts use cases to inform integration testing estimates  

• Visualizes results in architecture views, which can be used to communicate 
with multiple stakeholders 

As discussed by Auguston and Whitcomb “The MP behavior model is based on 

the concept of an event as an abstraction of activity” [3]. MP is an executable architecture 

model that can be executed on tools to generate examples of the behaviors in the form 

event traces (use cases). An executable architecture model can be inspected and 

debugged to test whether the architecture model accurately captures the behaviors of the 

system.  

MP’s foundation is in lightweight formal methods, which are essential to 

behavioral modeling of complex systems because they remove ambiguity from the 

architecture model. As with all assessments, visual representations and automated tools 

assist architecture assessments based on lightweight formal methods. Such tools provide 

immediate feedback, help identify errors once an early architecture draft is constructed, 

and allow the user to reason about the model. There are many tools that support 

lightweight formal methods-based analysis, including MP’s Analyzer on Firebird [6], 

Eagle6 [7], and Alloy Analyzer [8]. Firebird and Eagle6 are implementations of the MP 

framework. Eagle6 is a commercial tool, which has been graciously made available for 

select research purposes. Firebird is a Naval Postgraduate School (NPS) implementation 

that is publicly available and was ultimately selected for this research. A more detailed 

discussion of MP and the tool MP Analyzer on Firebird, or simply Firebird, is included in 

Chapter II Section E. 
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This research also leverages the International Function Point User Group 

(IFPUG)’s counting method, which uses a function point (FP) as the unit of functional 

size. IFPUG states, “A Function Point is a normalized metric used to evaluate software 

deliverables and to measure size based on well-defined functional characteristics of the 

software system” [9]. Function point analysis (FPA) provides a way for measuring 

software development and maintenance, independent of the technology used for 

implementation. FPA is viewed from the perspective of the functionality requested by 

and provided to the user, either a human user or another system. FP descriptions can also 

help visualize a system, its sub-components, and the environment to address the concerns 

of specific stakeholders. As such, FPA is an initial step to describing the architecture 

model of a system.  

One of the earliest activities in the FPA counting process is identifying the 

application boundary. FPA transactional functions can be viewed as markers of this 

boundary. The ThreeMetrics methodology unambiguously defines the boundaries and 

interactions of the system and the environment (i.e., everything but the system, including 

the user) through descriptions in the MP’s model schema of the FPA transactional 

functions. The interactions of the FPA data function types are also represented in the 

MP’s model schema. Once the boundaries are identified and the interactions have been 

described, the transactional and data function types are extracted from the MP model and 

complexity value assigned to provide the overall UFP count.  

The UFP count is then used as input into COCOMO II to calculate an effort 

estimate. The MP model is a rich source of information. In addition to extracting a UFP 

count, the number of use cases to inform integration test estimates and view of the 

architecture are also extracted from the MP model.  

Chapter II of this dissertation presents related work that influenced this research. 

The ThreeMetrics methodology is then described in Chapter III. The methodology is 

demonstrated through analyzing three examples in Chapter IV. Chapter V provides a 

summary of results and findings. 
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D. PROPOSED ADVANCES TO THE STATE OF THE ART  

The ThreeMetrics methodology relates well-established methodologies, such as 

FP counting and COCOMO II cost modeling, to an executable behavioral modeling of 

system- and software-architecture specifications.  

ThreeMetrics improves on previous state-of-the-art, semi-formal representations 

used by current function-point-counting methods. By using high-level pseudocode and 

composition operations from the MP framework, the resulting behavioral architecture 

model can be iteratively inspected and revised until it represents accurate behaviors.  

The precise model of the system- and software-architecture specification includes 

describing the boundary separating the application under analysis and the environment. If 

architecture is considered a bridge between the requirements and high-level design, then 

an architecture model helps to build the correct bridge. The MP model is executed using 

Firebird, resulting in views of the architecture that are automatically generated. These 

views establish a “common mental model,” a model that all users can interpret, used to 

communicate with a spectrum of stakeholders.  

 The development of a precise architecture and commonly understood views early 

in the product’s life cycle reduces the potential for software failure and lowers costs in 

implementation. This improves on the state-of-the-art by providing a mechanism to 

execute the representation of both the application and the environment using the same 

modeling framework, and then automatically generating use cases and scenarios (i.e. 

views of the architecture model) that serve as examples that humans can understand 

better than generic descriptions.  

The MP model can be inspected manually or by automated tools to extract the 

number of composition operations that represent the transactional functions and data 

functions and their associated complexity. Once the UFP count is calculated, it is then 

inserted into the COCOMO II cost-estimation models to determine effort.  
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II. RELATED WORK 

As discussed in Chapter I, the goal of this research is to develop a methodology to 

extract UFP counts from executable architectural behavioral models for use in cost-

estimation models, such as COCOMO II, to inform effort estimates early in the life cycle 

of the system. In order to achieve this research goal, the goal itself had to be decomposed 

into a set of executable research tasks, exploring how mature methodologies and concepts 

could be linked to create a new methodology. The related works chapter highlights the 

concepts that established the foundation on which this research was built.  

Developing the ThreeMetrics methodology required an understanding of what 

products would result from applying the methodology to communicate effort estimates 

early in the life cycle of the system. Sections A through F of Chapter II highlight the 

following key points that are relevant to this research. 

• The scope of effort estimates: For this research, effort estimates included 
person-month effort, schedule, cost, and integration testing. This led to 
assessing the COCOMO II model for person-month effort, schedule, and cost 
and considering inputs that could be used in COCOMO II, such as UFP 
counts. Section A of this chapter highlights key points about software cost 
estimation in general, COCOMO II specifically, and introduces the 
relationship between UFP counts and COCOMO II.  

• Unadjusted function point counts: UFP counts are one of several inputs that 
can be used in the COCOMO II model. UFP counts were selected as the input 
to COCOMO II for this research. Section B of this chapter addresses FPA, 
specifically data and transactional functions, and the development of 
unadjusted FP counts. 

• Architecture modeling: UFP counts are developed very early in the lifecycle 
of the application being counted. Transactional and data functions can be 
viewed as interactions internal and external to the application being counted. 
These interactions can be represented in models of the system’s architecture. 
Section C of this chapter addresses architecture modeling.  

• Formal, semi-formal, and lightweight formal methods: One of the greatest 
challenges in system design and development is ensuring that the users’ 
requirements have been satisfied by the implemented application. User 
requirements are often communicated in natural language, which can be 
ambiguous. Specificity in the description of the requirements can be achieved 
using more precise formal descriptions, but the resources needed to create 
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them can be prohibitive. Section D of this chapter discusses the role of formal, 
semi-formal, and lightweight formal methods as they relate to this research.  

• Monterey Phoenix: Describing the behaviors of an application and the 
environment with which it interacts can be improved by capturing the 
behaviors in an executable architecture model, using a modeling language to 
describe that information, and then using an automated tool to execute the 
model. The MP modeling language and framework and the MP Analyzer on 
Firebird were used to describe and execute MP architecture behavioral 
models. Section E of this chapter provides a description of MP and the aspects 
of the language and framework relevant to this research. 

• Integration test estimates: Integration testing is estimated to represent 25 
percent of the total effort associated with an application. The schedule results 
from the construction phase of the COCOMO II model and the number of 
event traces generated from the MP model running on Firebird are used to 
inform integration testing estimates. Section F discusses what integration 
testing is and the relevance of the scope used in MP Analyzer on Firebird for 
the generation of the event traces.  

Although these topics may be familiar to some readers, they may not be as 

familiar to others. The reader will be able to explore the references for a more complete 

description of each term and the associated topic. The combination of these concepts was 

instrumental in selecting what methodologies would be used in the development of 

ThreeMetrics, which are discussed in Chapter III of this document. 

A. SOFTWARE COST ESTIMATION  

There is a range of estimation techniques and algorithmic cost modeling that 

should be considered when estimating software costs and impacts to schedule. The main 

cost contributors to a software development project include hardware, software evolution, 

training, and the effort of software developers. Most practitioners believe that effort is the 

greatest contributor to overall effort and cost. Quantifying effort is a necessary activity 

when laying out the resources needed to successfully develop a new software system or 

enhance an existing one. Two key categories of metrics associated with productivity 

estimates are size-related metrics and function-related metrics. As noted by Sommerville,  

Productivity estimates are usually based on measuring attributes of the 
software and dividing this by the total effort required for development. 
There are two types of metric that have been used: 
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1. Size-related metrics. These are related to the size of some output from 
an activity. The most commonly used size-related metric is lines of 
delivered source code. Other metrics that may be used are the number of 
delivered object code instructions or the number of pages of system 
documentation. 

2. Function-related metrics. These are related to the overall functionality 
of the delivered software. Productivity is expressed in terms of the amount 
of useful functionality produced in some given time. Function points and 
object points are the best-known metrics of this type.  

Lines of source code per programmer-month (LOC/pm) is widely used as 
software productivity metric. You can compute LOC/pm by counting the 
total number of lines of source code that are delivered, then divide the 
count by the total time in programmer-months required to complete the 
project. This time therefore includes the time required for all other 
activities (requirements, design, coding, testing and documentation) 
involved in software development. [10, pp. 615–616]  

While LOC/pm is a valuable productivity metric, it can be misleading. If one 

programmer writes a more concise code than another programmer, or uses a more 

expressive coding language, the perception of productivity will be inconsistent with 

reality. An attribute other than coding size needs to be considered. Sommerville, with the 

contributions of Albrecht and Gaffney, discusses,  

An alternative to using code size as the estimated product attribute is to 
use some measure of the functionality of the code. This avoids the above 
anomaly, as functionality is independent of implementation language. The 
best known function based measure is the function-point count. 
[10, pp. 615–616]  

The activities of the international function point users group (IFPUG) continue to 

standardize and refine the FP counting methodology initiated by Albrecht, and are 

discussed in more detail in section B of this chapter. The use of UFP counts in 

algorithmic cost models is of specific interest to this research. Sommerville explains, 

Algorithmic cost modelling uses a mathematical formula to predict project 
costs based on estimates of the project size, the number of software 
engineers, and other process and product factors. An algorithmic cost 
model can be built by analysing the costs and attributes of completed 
projects and finding the closest fit formula to actual experience. 
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In its most general form, an algorithmic cost estimate for software cost can 
be expressed as:  

Effort = A x SizeB x M  

where A is a constant factor that depends on local organisational practices 
and the type of software that is developed. Size may be either an 
assessment of the code size of the software or a functionality estimate 
expressed in function or object points. The value of exponent B usually 
lies between 1 and 1.5. M is a multiplier made by combining process, 
product and development attributes, such as the dependability 
requirements for the software and the experience of the development team. 
Most algorithmic estimation models have an exponential component (B in 
the above equation) that is associated with the size estimate. This reflects 
the fact that costs do not normally increase linearly with project size. As 
the size of the software increases, extra costs are incurred because of the 
communication overhead of larger teams, more complex configuration 
management, more difficult system integration, and so on. Therefore, the 
larger the system, the larger the value of this exponent. Unfortunately, all 
algorithmic models suffer from the same fundamental difficulties:  

1. It is often difficult to estimate Size at an early stage in a project when 
only a specification is available. Function-point and object-point estimates 
are easier to produce than estimates of code size but are often still 
inaccurate. 

2. The estimates of the factors contributing to B and M are subjective. 
Estimates vary from one person to another, depending on their background 
and experience with the type of system that is being developed… 

A number of algorithmic models have been proposed as the basis for 
estimating the effort, schedule and costs of a software project. The 
COCOMO model is an empirical model that was derived by collecting 
data from a large number of software projects. These data were analysed 
to discover formulae that were the best fit to the observations. These 
formulae link the size of the system and product, project and team factors 
to the effort to develop the system. [10, pp. 615–616]  
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Table 1 illustrates the primary methods for cost and schedule estimation and the 

strengths and weaknesses of each, as discussed by Boehm et al. in [11]. 

Table 1.   Estimation Method Comparison. Adapted from [11, p. 226]. 

 
 

As discussed by Boehm et al. “Algorithmic models are based on cost estimating 

relationship (CER) or schedule estimating relationship (SER) algorithms.” COCOMO II 

is included in this category and is characterized by Boehm et. al., as one of “fairly general 

software definition, development, and evolution cost and schedule estimation models” 

[11, p. 225–226]. 

COCOMO II was selected for this research because it is a well-documented, well- 

exercised model, supported by automated tools. The University of Southern California 

(USC) Center for Systems and Software Engineering (UCSSE) describes the history and 

current state of the COCOMO II model,  
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After several years and the combined efforts of USC-CSSE, ISR at UC 
Irvine, and the COCOMO II Project Affiliate Organizations, the result is 
COCOMO II, a revised cost estimation model reflecting the changes in 
professional software development practice that have come about since 
the 1970s. This new, improved COCOMO is now ready to assist 
professional software cost estimators for many years to come. [5] 

COCOMO II consists of three sub models: the Applications Composition, Early 

Design, and Post-architecture models. UFP counts are applicable to both the Early 

Design and Post-architecture models, and both models are of interest to this research. 

As described by USCCE, 

COCOMO II provides the following three-stage series of models for 
estimation of Application Generator, System Integration, and 
Infrastructure software projects: 

1. The earliest phases or spiral cycles will generally involve prototyping, 
using the Application Composition model capabilities. The COCOMO II 
Application Composition model supports these phases, and any other 
prototyping activities occurring later in the life cycle.  

2. The next phases or spiral cycles will generally involve exploration of 
architectural alternatives or incremental development strategies. To 
support these activities, COCOMO II provides an early estimation model 
called the Early Design model. This level of detail in this model is 
consistent with the general level of information available and the general 
level of estimation accuracy needed at this stage.  

3. Once the project is ready to develop and sustain a fielded system, it 
should have a life-cycle architecture, which provides more accurate 
information on cost driver inputs, and enables more accurate cost 
estimates. To support this stage, COCOMO II provides the Post-
Architecture model. [4, p. 7] 

The counting process for determining the UFP count used in COCOMO II for 

both the Early Design and Post-Architecture models is consistent with the approach 

supported by the IFPUG. A combination of UFP and source lines of code is used for the 

Early Design and Post-Architecture models, leveraging counting rules from the IFPUG 

for the UFP count. As discussed by UCSSE with contributions from Jones, 

To determine the nominal person months for the Early Design model, 
the unadjusted function points have to be converted to source lines of 

 

http://www.isr.uci.edu/
http://www.isr.uci.edu/
http://csse.usc.edu/csse/research/COCOMOII/cocomo_sponsors.htm
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code in the implementation language (assembly, higher order language, 
fourth-generation language, etc.) in order to assess the relative 
conciseness of implementation per function point. COCOMO II does 
this for both the Early Design and Post-Architecture models by using 
tables such as those found in [Jones 1991] to translate Unadjusted 
Function Points into equivalent SLOC. [4, p. 20] 

The COCOMO II tool [5] automatically converts UFP counts into source lines 

of code for a specific implementation language that is an option that can be selected in 

the tool. This calculation can also be done manually using conversion ratios such as 

those found in Table 2 from [12], which is an updated version to the table referenced by 

USCCE in [4, p. 20]. This table includes a SLOC/UFP conversion ratio for the Java 

language. 

Table 2.   UFP to SLOC Conversion Ratios. Adapted from [12]. 

 
 

In COCOMO II, a development effort estimate is in person months (PM). As 

described by USCCE in the COCOMO II Model Definition Manual v. 2.1, including 

contributions from Banker et al., 

The nominal effort for a given size project and expressed as person 
months (PM) is given by …  
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PMnominal = A x (Size)B …  

[This equation] is the base model for the Early Design and Post-
Architecture cost estimation models. The inputs are the Size of software 
development, a constant, A, and a scale factor, B. The size is in units of 
thousands of source lines of code (KSLOC). This is derived from 
estimating the size of software modules that will constitute the 
application program. It can also be estimated from unadjusted function 
points (UFP), converted to SLOC then divided by one thousand. 
Procedures for counting SLOC or UFP are explained in the chapters on 
the Post-Architecture and Early Design models respectively. The scale 
(or exponential) factor, B, accounts for the relative economies or 
diseconomies of scale encountered for software projects of different 
sizes The constant, A, is used to capture the multiplicative effects on 
effort with projects of increasing size. [4, p. 7] 

A more detailed discussion of the UFP count, its relationship to SLOC, and its 

use in COCOMO II is found in Chapter III, Methodology, and Chapter IV, 

Implementation.  
 

B. FUNCTION POINT COUNTING PROCESS  

In the late 1970s, Allan Albrecht from IBM was the first person to publicly 

describe FPA as a method for functionally sizing software. The IFPUG was formed in 

1986. While there are many companies that promote minor variations on the FP counting 

process, IFPUG has been viewed as the authoritative source of information with respect 

to this research. As described by the IFPUG [13] on its website,  

The International Function Point Users’ Group (IFPUG) is a non-profit, 
member governed organization. The mission of IFPUG is to be a 
recognized leader in promoting and encouraging the effective management 
of application software development and maintenance activities through 
the use of Function Point Analysis (FPA) and other software measurement 
techniques.  

The IFPUG website is a valuable resource for FPA information, professional 

certifications, educational opportunities, conferences, committees, and working groups. 

The IFPUG’s Function Point Counting Practices Manual contains the definitions and the 

FP counting methodology used as the baseline for this research. The IFPUG information 

was augmented, with contributions from FP counting practitioners, to understand how the 
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methodology is used in practice. Although there is variability in the opinions, 

interpretations and refinements of the IFPUG FP counting methodology, the basic 

concepts from that baseline are still consistently understood and implemented in tools and 

practice. Additionally, there are descriptions, tutorials, and papers from practitioners, 

each offering their own perspective on how to interpret the functional requirements and 

apply the counting methodology [13]–[17].  

The IFPUG provides the following definition, “Function Points are an 

internationally standardized unit of measure used to represent software size. The IFPUG 

functional size measurement method (referred to as IFPUG 4.3.1) quantifies software 

functionality provided to the user based solely on its logical design and functional 

requirements” [13].  

For all the promoters and benefits associated with FPA, there are also detractors 

and drawbacks. As derived from Kemerer [18] and Low and Jeffery [19] and stated by 

Fraternali et al., 

It is well known that calculating the function points associated with a 
system is a labor intensive, time consuming and imprecise task. 
Organizations need experienced personnel dedicated to function point 
analysis, a substantial tuning period, and a large project base before 
reaching accurate predictions… In other words, much the same problems 
occurring in manual implementation of software affect also the manual 
computation of the software size. [20]  

Yet, FP descriptions can be considered ways to view a system and its input and 

output activities, with the primary focus on addressing concerns of stakeholders at the 

outset.  

Data function and transactional function types are foundational terms in the FPA 

community as is the concept of the users’ perspectives. For the purposes of FPA, a user 

can be a human or another machine interacting with the software. As discussed by the 

IFPUG in [9], the well-documented process to perform a FP count includes the following 

steps:  

• Gather available source information  

• Determine the counting scope and boundary  
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• Count data function and transactional function types 

• Determine the unadjusted FP count  

• Determine the value adjustment factor 

• Calculate the final adjusted FP count  

One of the earliest steps in the FPA counting process is identifying the counting 

scope (e.g., new application, modification to an existing application), and the application 

boundaries (e.g., what is the application of interest being considered for the count and 

what is not). As discussed by IFPUG,  

Function point counts can be identified, based on their purpose, as one of 
the following:  

• Development project function point count 

• Enhancement project function point count  

•  Application function point count [9, Sec.2-4] 

IFPUG also clearly defines the boundary of the application being counted, to 

distinguish it from the environment: 

The boundary is a conceptual interface between the software under study 
and its users. The boundary (also referred to as application boundary):  

• Defines what is external to the application. 

• Indicates the border between the software being measured and the user.  

• Acts as a ‘membrane’ through which data processed by transactions (EIs, EOs 
and EQs) pass into and out from the application.  

• Encloses the logical data maintained by the application (ILFs).  

• Assists in identifying the logical data referenced by but not maintained within 
this application (EIFs). 

• Is dependent on the user’s external business view of the application. It is 
independent of technical and/or implementation considerations. [9, Sec. 5-4] 
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Figure 1 illustrates key concepts associated with FP counting and analysis: 

application boundary containing the application being considered, the transactional 

functions (External Input-EI, External Output-EO, External Inquiry-EQ), the data 

functions (Internal Logical File-ILF, External Interface File-EIF), and a User sitting in 

front of his computer.  

 

Figure 1.  Functionality as Viewed from the User’s Perspective. 
Adapted from [21]. 

The IFPUG provides the following definitions in [9], which support the concepts 

illustrated in Figure 1: 

An external interface file (EIF) is a user recognizable group of logically 
related data or control information, which is referenced by the application 
being measured, but which is maintained within the boundary of another 
application… [9, Sec.6-2] 

An internal logical file (ILF) is a user recognizable group of logically 
related data or control information maintained within the boundary of the 
application being measured… [9, Sec.6-2] 

An elementary process is the smallest unit of activity that is meaningful to 
the user… [9, Sec.6-3] 

A data function represents functionality provided to the user to meet 
internal and external data storage requirements. A data function is either 
an internal logical file or an external interface file… [9, Sec.6-4]  

Assign each identified ILF and EIF a functional complexity based on the 
number of data element types (DETs) and record element types (RETs) 
associated with the ILF or EIF. This section defines DETs and RETs and 
includes the rules for each… [9, Sec.6-5] 
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A data element type (DET) is a unique, user recognizable, non-repeated 
attribute… [9, Sec.6-5] 

A record element type (RET) is a user recognizable sub-group of data 
element types within a data function… [9, Sec.6-7] 

A transactional function is an elementary process that provides 
functionality to the user to process data. A transactional function is an 
external input, external output, or external inquiry… [9, Sec.7-1] 

An external input (EI) is an elementary process that processes data or 
control information sent from outside the boundary… [9, Sec. 7-3] 

An external output (EO) is an elementary process that sends data or 
control information outside the application’s boundary and includes 
additional processing beyond that of an external inquiry… [9, Sec.7-3] 

An external inquiry (EQ) is an elementary process that sends data or 
control information outside the boundary… [9, Sec.7-3] 

A file type referenced (FTR) is a data function read and/or maintained by 
a transactional function… [9, Sec.7-14] 

Practitioners often expound upon the definitions of the original IFPUG terms. 

Longstreet in [15] provides a practitioner’s view of transactional and data function types, 

and describes key words in natural language that are associated with data functions and 

transactional functions. FTRs, RETs, and DETs are important because their count 

influences the functional complexity and, by extension, the functional size used to 

calculate the unadjusted FP count for each transactional or data function. The summation 

of the UFP count for each data function and each transaction function results in the 

overall UFP point count. Functional complexity and size are identified for each ILF, EIF, 

EI, EO, and EQ, in Tables 3, 4, 5, 6, and 7, based on values captured from the IFPUG [9]. 

These tables are used in the calculation of the UFP counts in Chapters III and IV of this 

dissertation. 
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Table 3 contains the functional complexity and size values used to determine the 

UFP count for an EI. 

Table 3.   Functional Complexity and Size for EIs. Adapted from 
[9, Sec. 1, p. 19 Table 6 and 8]. 

 
 

Table 4 contains the functional complexity and size values used to determine the 

UFP count for an EQ. 

Table 4.   Functional Complexity and Size for EQs. Adapted from 
[9, Sec.1, p. 19, Table 7 and Table 8]. 

 
 

Table 5 contains the functional complexity and size values used to determine the 

UFP count for an EO. 

Table 5.   Functional Complexity and Size for EOs. Adapted from 
[9, Sec.1, p. 19, Table 7 and Table 8]. 
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Table 6 contains the functional complexity values used to determine the UFP 

count for an ILF and EIF. 

Table 6.   Functional Complexity for ILF and EIF. Adapted from 
[9, Sec.1, p. 13 Table 1]. 

 
 

Table 7 contains the functional size values used to determine the UFP count for an 

ILF and EIF. 

Table 7.   Functional Size for Data Functions. Adapted from 
[9, Sec. 1, p. 13, Table 2]. 
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Examples of UFP calculations using these tables are provided in Chapters III and 

IV. Once the total UFP count has been calculated, the adjusted FP Count can be 

calculated using the value adjustment factor (VAF). For the purpose of this research, the 

UFP was used in lieu of the adjusted FP count because the UFP count is an input for 

sizing in the COCOMO II model. As explained by Boehm et al., from a collection of his 

works edited by Selby,  

Each instance of these function types is then classified by complexity 
level. The complexity levels determine a set of weights which are applied 
to their corresponding function point counts to determine the Unadjusted 
Function Points quantity. This is the Function Point sizing metric used by 
COCOMO 2.0. The usual Function Point procedure involves assessing the 
degree of influence of fourteen application characteristics on the software 
project determined according to a rating scale of 0.0 to 0.05 for each 
characteristic. The fourteen ratings are added together, and then added to a 
base level of 0.65 to produce a general characteristic adjustment factor that 
ranges from 0.65 to 1.35. Each of these fourteen characteristics, such as 
distributed functions, performance, and reusability, thus has a maximum 
5% contribution to the estimated effort.  

This is significantly inconsistent with COCOMO experience; thus, 
COCOMO 2.0 uses Unadjusted Function Points for sizing, and applies its 
reuse factors, cost driver effort multipliers, and exponent scale factors to 
this sizing quantity. [22, p. 281–282] 

At a high level, it appears that the goal of the IFPUG and the FPA methodology is 

to provide structure and consistency in ambiguity, creating a bridge between functional 

requirements and high level design, independent of implementation language. In effect, 

this bridge is an architectural model of the software system being counted, so that the 

attributes of the system, as seen from the perspective of the user, can be represented in a 

way that other FP counters can understand.  

FP descriptions can then be considered a way to view the behaviors of a system 

through its input and output activities, i.e. its interactions. These behaviors can be 

described with greater specificity using a Monterey Phoenix executable architecture 

model.  

An event in MP is an abstraction of an activity within a system. An elementary 

process represents the smallest unit of activity in a system. A transactional function is an 
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elementary process. The behavior of a transactional or data function can be described in 

an MP architecture model as an abstraction of an interaction, by using high-level pseudo-

code. The functional aspects of requirements can then be represented in a way that is 

amenable to incremental refinement.  

The composition operations COORDINATE and SHARE ALL can be viewed as 

markers of an interaction in the MP model. The structure and the complexity of 

interactions in MP provide a source for assigning functional complexity and size values 

to the UFP count. These values are consistent with the functional complexity and 

functional size values associated with DETs, RETs, and FTRs in the function point 

counting methodology.  

Since an MP model is precise and formal, FP metrics can be extracted from the 

model by using automated tools, to support cost estimates early in the life cycle of an 

application. A more detailed discussion of software architectures and software 

architecture modeling is in Chapter II Section C; a more detailed discussion of MP can be 

found in Chapter II Section E; their relationship is described in the ThreeMetrics 

methodology in Chapter III. 

C. ARCHITECTURE AND ARCHITECTURE MODELING 

The implementation of a software system is a socio-technical endeavor. As such, 

the system’s purpose and relevance have to be communicated to multiple stakeholders in 

a way that hides its complex detail but retains its key characteristics. This can be 

achieved through the model of the architecture of a system and the environment with 

which it interacts. An architecture model is an abstraction that is used to reason about 

what the real system and environment will be. The model can be manipulated and 

presented in such a way as to abstract away detail until needed, at which point 

incremental refinement of the architecture shines a light on the approach to design and 

implementation.  

Yet, ‘architecture’ is one of the most overused, misused, and disrespected words 

in the DOD vocabulary. Rather than viewing architectural analysis and architecture 

modeling as powerful tools to establish a “common mental model” of a system across a 
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spectrum of stakeholders, models of architectures are viewed as check-the-block 

requirements for acquisition milestones and DOD directives. The notations and tools are 

considered, in many cases rightly so, oversold promises that, in actuality, require an 

expensive shadow workforce for their creation and maintenance, with a fraction of return 

on investment. This is an unfortunate situation that has evolved due to cottage-industry 

mentality, and the demands of well-meaning bureaucratic processes.  

The model of the architecture of a system and the environment with which it 

interacts is the single most important artifact that an organization can have. The model 

contributes to the following activities:  

• Unifying an organization 

• Eliciting and confirming what the user wants 

• Assigning organizational responsibilities and informing resourcing decisions 
across organizations 

• Exploring high level design decisions 

• Positioning for development 

• Executing developmental, integrated, and operational testing 

• Supporting deployment into production 

• Controlling software evolution in sustainment  

 

Perhaps the sticking point is the multitude of definitions of the terms that are 

directly and indirectly associated with the words ‘architecture’ and ‘architecture model’, 

including ‘system’, ‘software system’, ‘application’, ‘software architecture’, ‘system 

architecture’, ‘environment’, ‘system-of-systems’, ‘socio-technical systems’, ‘software 

architecture models’, and ‘modeling notations.’ There are many definitions available 

across multiple disciplines; only those that are relevant to and have influenced this 

research follow.  

In software engineering and architecture literature, the terms ‘application’ and 

‘system’ are often assumed to be used interchangeably. Practitioners will argue that an 

implemented system must not only include the application, but also its target computing 
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platform. The definition is often then expanded to include data, people, and processes, 

depending on the reference point of the practitioner.  

The IFPUG throughout [9] appears to use the terms ‘application’ and ‘system’ 

interchangeably.  

Pfleeger and Atlee describe a system as “a collection of things: a set of entities, a 

set of activities, a description of the relationships among entities and activities and a 

definition of the boundary of the system” [23, p. 17]. 

Rozanski and Woods describe a computer system as “the software elements that 

you need to specify and/or design in order to meet a particular set of requirements and the 

hardware you need to run those software elements on” [1, p. 11]. 

Rechtin defines a system as “A set of different elements so connected or related as 

to perform a unique function not performable by the elements alone” [24, p. 7]. For the 

purposes of this research, the environment is everything but the system under analysis. 

The environment can be another system or a system of systems. The user is considered 

part of the environment with which an application interacts. 

The Department of Defense Architecture Framework (DODAF) describes a 

system as “a functionally, physically, and/or behaviorally related group of regularly 

interacting or interdependent elements” [25]. 

Sommerville defines a system as “a purposeful collection of interrelated 

components that work together to achieve some objective” [10, p. 21]. Sommerville 

introduces technical computer-based systems and socio-technical systems, and describes 

the key characteristics of a socio-technical system:  

emergent properties that are properties of the system as a whole rather 
than associated with individual parts of the system. Emergent properties 
depend on both the system components and the relationships between 
them…  

They are often nondeterministic. This means that when presented with 
specific input, they may not always produce the same output…  
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Furthermore, use of the system may create new relationships between the 
system components and hence change its emergent behavior. [10, p. 21–
22] 

As an addition to these definitions, Conway states “Any organization that designs 

a system (defined more broadly here than just information systems) will inevitably 

produce a design whose structure is a copy of the organization's communication 

structure” [26]. 

Although there are no globally agreed to definitions of a system of systems, 

Vaneman and Jaskot suggest that it is “a set or arrangement of systems that results when 

independent and task-oriented systems are integrated into a larger systems construct, that 

delivers unique capabilities and functions in support of missions that cannot be achieved 

by individual systems alone” [27].  

Sommerville’s definitions associated with a socio-technical system are most 

relevant to a practitioner’s experience with software, particularly the inclusion of 

interaction with a human user and the reality of emergent behavior. However, since using 

the qualifier ‘socio-technical’ to describe a system is often not well received, ‘software 

system’ is still the term of choice. 

The relationship between a system, the architecture of a system, and an 

architecture model of a system is confusing. Rozanski and Woods state “Every system 

has an architecture, whether or not it is documented and understood” [1, p. 20].  

The challenge practitioners often face is interpreting the architecture of an 

existing system and environment, or the model of an architecture of a new system or 

enhancement to an existing system. Often, the artifacts describing them have been 

documented incorrectly, incompletely, or not documented at all. For an existing system, 

the architecture may be recovered from implementation artifacts, but that is not a simple 

task. Maier and Rechtin define an architecture as “The structure—in terms of 

components, connections, and constraints—of a product, process, or element” 

[28, p. 415]. 
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Rozanski and Woods reiterate the ISO/IEC 42010 definition of architecture, 

which is expanded to address the influences of environment: “The architecture of a 

system is the set of fundamental concepts or properties of the system in its environment, 

embodied in its elements, relationships, and the principles of its design and evolution” 

[1, p. 12]. 

DODAF does not explicitly define the term ‘software system architecture’ or its 

environment, but the framework and views can be used to describe the architecture of a 

system that includes software and software services.  

As suggested by Taylor et al. “A software system’s architecture is the set of 

principal design decisions made about the system” [29, p. 58]. 

When considering the software architecture of a system and environment, 

identifying what to abstract away or hide is as much an art as a science. Bass et al. 

explain:  

an architecture is first and foremost an abstraction of a system that 
suppresses details of elements that do not affect how they use, are used by, 
relate to, or interact with other elements. In nearly all modern systems, 
elements interact with each other by means of interfaces that partition 
details about an element into public and private parts. Architecture is 
concerned with the public side of this division; private details-those 
having to do solely with internal implementations—are not architectural. 
[30, p. 21] 

This definition was very interesting, as it begs the question, what is private versus 

what is public? How and where is the boundary drawn for the system under analysis, 

when there is some confusion as to the definition of the system? Is it an arbitrary 

boundary? In the absence of a definitive architecture, cyber artifacts that describe the 

accreditation boundary of a system are useful tools, to support the steps needed to recover 

the architecture of the internal components.  

Once a software system is imagined, the next focus is to define it through a model 

of its architecture. Taylor et al. describe an architectural model as 
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an artifact that captures some or all of the design decisions that comprise a 
system’s architecture. Architectural modeling is the reification and 
documentation of those design decisions… 

A software systems architecture is captured in an architectural model 
using a particular modeling notation. An architectural modeling notation is 
a language or means of capturing design decisions. [29, p. 185] 

In the current practice, a new system or capability may be introduced into an 

existing environment, resulting in unexpected behaviors requiring corrective action that 

has a resourcing impact. Software engineers and architects need to be able to analyze the 

new system and existing environment in order to advise program managers about the 

impacts to cost, schedule, and operations. Architectural modeling offers a way to assess 

architectural design decisions and their impacts prior to, during, and after implementation 

and deployment.  

A model of an architecture should not be confused with the architecture itself. As 

discussed by the Object Management Group: 

A model is always a model of something. The thing being modeled can 
generically be considered a system within some domain of discourse. The 
model then makes some statements of interest about that system, 
abstracting all the details of the system that could possibly be described, 
from a certain point of view and for a certain purpose. [31] 

Monterey Phoenix describes the architecture model of a system and the 

environment with which it interacts in terms of behaviors: the behaviors of components 

of the software system, the behaviors of the interactions between the components, the 

behaviors of the environment with which it interacts, and the behavior of its interaction 

with the environment [32]–[34]. 

Techniques used in software system design, such as abstraction and 

encapsulation, are directly applicable to the architecture model of a system and its 

environment. As discussed in Pfleeger and Atlee and derived from Berard:  

However, encapsulation is not the same as information hiding… 
abstraction is a technique that helps us identify which specific information 
should be visible, and which information should be hidden. Encapsulation 
is then the technique for packaging the information in such a way as to 
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hide what should be hidden, and make visible what is intended to be 
visible [23, p. 290].  

Seidewitz offers a perspective on model-driven development, discussing 

definitions of models, metamodels, and model interpretation leveraging unified modeling 

language (UML) terms to describe models of software, specifically the system under 

study (SUS) [35].  

Selic highlights the necessity of model execution, stating that “one important 

advantage of executable models is that they provide early direct experience with the 

system being designed” [36].  

These become very useful techniques when establishing the boundary of an 

application under analysis, and deciding what information to abstract and how to do so. 

The development of an architecture model starts with understanding what the user 

wants, i.e., his or her requirements, and then creating a representation of those 

requirements in architecture models and extracting views that answer questions from 

stakeholders, including the user. Pfleeger and Atlee state that “A requirement is an 

expression of desired behavior” [23, p. 143]. A system’s required behaviors can be 

modeled in MP to confirm that the requirements communicated by the stakeholders have 

been satisfied.  

Pfleeger and Atlee also highlight that “the architecture of a system is the interface 

between required capabilities in a specification and the implemented system” [23, p. 

229]. Stakeholders communicate their concerns through requirements, another word that 

elicits strong reactions. ‘Requirements’ is an umbrella term that captures functional, non-

functional, derived, technical, as well as variations of the meaning of each one of these 

terms. Once the term ‘requirement’ is sufficiently clear, then the process of iterating 

between the users and the technical team can begin, followed by employing 

methodologies to reason about the design and implementations options. Pfleeger and 

Atlee state that 
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a functional requirement describes required behavior in terms of required 
activities such as reactions to inputs and state of each entity before and 
after an activity occurs… 

The functional requirements define the boundaries of the solution space 
for our problem.  

A quality requirement or non-functional requirement describes some 
quality characteristic the software solution must possess, such as fast 
response time, ease of use, high reliability, or low maintenance cost. 
[23, p. 148–149] 

Once initial functional user requirements are captured, the process of specifying 

what the software system will do in terms of tasks and services begins, resulting in an 

architectural representation of the system. This iterative process is best served by 

modeling the architecture.  

A software engineer or developer will find behaviors as represented by 

pseudocode, sequence diagrams or use cases necessary to translate the user requirements 

into implemented code. Cost analysts will want to understand what each instance of the 

architecture at a point in time would cost (from requirements elicitation through software 

evolution) and document those resourcing implications in a life cycle cost estimate, or 

year of execution spend plan. Testers can leverage architectures to identify what are 

optimal instrumentation points and what test cases and strategies are necessary for 

development, integration, and operational testing. The program manager must ensure that 

both user and acquisition expectations are being met by applying cost and management 

controls. As illustrated in Table 8, each stakeholder has his or her own interests and needs 

views to assist in understanding the architecture.  
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Table 8.   Architecture: A Bridge between Requirements and 
High-Level Design. 

 
 

Simple box and arrow diagrams, and sequence diagrams are often sufficient to 

assist with understanding cost, organizational responsibility, and schedule impacts. The 

users just want the system to work, as they have imagined. A prototype of screens, user 

stories, and sequence diagrams are supportive of iteratively refining their requirements. 

Extracting the appropriate information from architecture to support communication with 

multiple stakeholders is always a challenge because it requires multiple related views that 

the stakeholders can interpret from their viewpoint.  

Kruchten’s 4+1 View model was designed at the outset to describe the 

architecture of a software–intensive system, using multiple, integrated views. Each view 

focuses on a different aspect of the software system architecture [37]. As with other 

architecture frameworks, views, and notations, 4+1 offers a mechanism for engineers and 

developers to communicate with each other and with stakeholders. Whether someone 
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speaks the language of DODAF, 4+1, or utilizes any other framework, understanding 

what are the key elements that comprise a software system and its environment, and 

where that information is located are critical to dealing with the complexity of a system 

within a system of systems. The greatest contribution of frameworks like DODAF and 

4+1 is that they offer the opportunity to develop a ‘common mental model’ of the 

architecture or a model of the architecture of a system. 

Rozanski and Woods are optimistic that stakeholders will respond to an 

architectural description (AD), which they define as “a set of products that documents an 

architecture in a way its stakeholders can understand and demonstrates that the 

architecture has met their concerns” [1, p. 25]. 

Each activity associated with a system’s lifecycle may require a different view of 

the architecture or architecture model to communicate relevant information to different 

stakeholders with different interests. The interrelated views of the system and 

environment assist in making a complex, incomprehensible problem into something that 

is more understandable to all stakeholders. 

D. THE ROLE OF FORMAL METHODS, SEMI-FORMAL METHODS AND 
LIGHTWEIGHT FORMAL METHODS IN ARCHITECTURE 
MODELING 

Architecture models play a significant role in the analysis of a software system, 

and the degree of formality used to model architecture can range from semi-formal 

formal, with lightweight formal methods being a practical compromise.  

Taylor et al. classify architecture models as informal, semi-formal, and formal. 

Informal models are typically captured in box-and-arrow diagrams, and can provide an 

effective high-level view that is understood by many different stakeholders. However, 

they are inherently ambiguous and often contain only minimal detail. Semi-formal 

architecture models, such as UML, try to balance precision with enough detail to 

facilitate communication and support both manual and automated analyses. Formal 

models are appreciated by technically-oriented stakeholders, and their notations have 
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formally defined syntax and semantics. Most models used by practitioners are semi-

formal [29].  

Formal methods introduce mathematical rigor into the design of a software 

system. Tinelli explains that formal methods have their foundation in “mathematical 

logic, a discipline that studies the precise formalization of knowledge and 

reasoning” [38].  

Collins describes the role of formal methods in software engineering and 

computer science, for design and test:  

formal methods are system design techniques that use rigorously specified 
mathematical models to build software and hardware systems. In contrast 
to other design systems, formal methods use mathematical proof as a 
complement to system testing in order to ensure correct behavior. [39] 

Jackson discusses that the foundation of software is the abstractions associated 

with them, where an abstraction is defined as a “structure, pure and simple—an idea 

reduced to its essential form” [40]. The selection of the correct level of abstraction, in 

order to address specific questions and concerns, is often easier said than done. 

Languages such as Z and tools such as Alloy Analyzer assist in the application of formal 

methods to the world of the practitioner.  

There continues to be some debate regarding the practicality of applying formal 

methods to mainstream software engineering activities. Hall presents a perspective that 

“formal methods are available and readily useable by practitioners, but yet the theoretical 

view offered by proponents of these techniques is somewhat overreaching” [41]. Sastry 

appears to support Hall’s position and suggests that semi-formal techniques must 

augment formal methods and tools, particularly when addressing system integration [42].  

Wieringa describes semi-formal techniques as diagraming and other techniques 

that use some form of structured natural language [43]. The manual counting technique of 

FPA lends itself to semi-formal design methods. Collins suggests that because of the 

rigor involved  
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formal methods are always going to be more expensive than traditional 
approaches to engineering. However, given that software cost estimation 
is more of an art than a science, it is debatable exactly how much more 
expensive formal verification is…  

While an all-encompassing formal description is attractive from a 
theoretical perspective, it invariably involved developing an incredibly 
complex and nuanced description language, which returns to the 
difficulties of natural language. [39] 

Hall also indicates that the term ‘formal methods’ covers “the use of mathematics 

in software development” [41]. This includes writing and proving a formal specification, 

constructing a program based on this specification, and then verifying the program. Hall 

states  that applying formal methods to develop a formal specification provides a “precise 

definition of what the software is intended to do” [41]. This assists in identifying 

mistakes prior to implementation in coding.  

Wing states that “Formal methods are used to reveal ambiguity, incompleteness, 

and inconsistency in a system, and expose design flaws early in the development process 

of the system, before finding them in test” [44]. 

That having been said, utilizing formal methods in and of itself does not guarantee 

that the software system will work as intended. Formal methods do assist with removing 

the ambiguity of natural language associated with an informal specification, and formal 

specifications do need to be translated back into natural language for discussions with 

users. That requires a skilled workforce knowledgeable of the application of formal 

methods, which is minimally available. 

Knowing when and where to use lightweight formal methods is critical to 

achieving return on investment of resources expended applying them. Easterbrook et al., 

state that “The lightweight approach to formal design recognizes that formal methods are 

not a panacea: there are areas where formal methods are useful, and areas where a formal 

specification will accomplish nothing” [45]. 

 Complex, software-intensive system of systems benefit from the discipline and 

precise descriptions of formal models of the systems, since natural language can be 

ambiguous. Therefore, a practical alternative to formal design is relevant and needed for 
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practitioners. A lightweight approach in which formal methods are applied in a limited 

way, offer the benefits of formal specification without many of the limitations associated 

with cost and complexity.  

As highlighted in Agerholm and Larsen, even with a pragmatic lightweight 

approach, the “main obstacle is to teach the engineers how to choose which parts to 

model and how to make appropriate abstractions of these parts” [46]. 

MP leverages lightweight formal methods and high-level pseudo code, and its 

supporting information offers examples on how to abstract behaviors. This results in a 

precise, flexible and practical framework to support behavioral modeling of architectures 

[3], [32]. MP was selected over other architecture modeling languages for this research 

based on its ease of use, availability of tools that allowed execution of the architecture 

model, and views generated by those tools.  

E. MONTEREY PHOENIX (MP) 

The ThreeMetrics methodology implements Monterey Phoenix, created and 

described by Auguston, as “a framework for software system architecture and business 

process (workflow) specification based on behavior models” [33]. 

The challenge for practitioners is determining how to reduce, rather than 

automate, complexity. Architectural modeling is a powerful tool, if supported by the 

appropriate architectural modeling framework and language. Monterey Phoenix renders a 

view of architectures as high level description of behaviors. This is accomplished at the 

system and subsystem level and for the interactions between them [32], [33]–[34].  

MP utilizes lightweight formal methods to unambiguously describe the behaviors 

of a system and the environment with which it interacts. The models are written in high-

level pseudo code, which gives the model author the ability to be both precise and 

practical. This research utilized MP architecture models to capture design decisions about 

precedence, inclusion, and ordering, although the MP language and framework have 

other capabilities that can be found in [3], [32]–[34], [47]–[51].  
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Building on the works of Jackson and the Open Management Group, Auguston 

describes the basic concepts for Monterey Phoenix as follows: 

A view of the architecture as a high level description of possible system 
behaviors, emphasizing the behavior of subsystems (components) and 
interactions between subsystems. MP introduces the concept of event as 
an abstraction of activity. 

The separation of the interaction description from the components 
behavior is an essential MP feature. It provides for a high level of 
abstraction and supports the reuse of architectural models. 

Interactions between activities are modeled using event coordination 
constructs. The environment’s behavior is an integral part of the system 
architecture model. MP provides a uniform method for modeling 
behaviors of the software, hardware, business processes, and other parts of 
the system. 

The event grammar models the behavior as a set of events (event trace) 
with two basic relations, where the PRECEDES relation captures the 
dependency abstraction, and the IN relation represents the hierarchical 
relationship. Since the event trace is a set, additional constraints can be 
specified using set-theoretical operations and predicate logic. 

The MP architecture description is amenable to deriving multiple views, 
and provides a uniform basis for specifying structural and behavioral 
aspects of a system. 

MP supports automated and exhaustive (for a given scope) scenario 
generation for early system architecture verification. The Small Scope 
Hypothesis [Jackson 2006] states that most flaws in models could be 
demonstrated on relatively small counterexamples. [33] 

Monterey Phoenix is an expressive language that offers a way to describe the 

world in terms of interactions: interactions between people, interactions between 

machines, and interactions between people and machines. The information provided in 

this section is a basic introduction to the MP event grammar. A more complete 

description of the language and examples of models can be found in [33] and [50]. 

Figure 2 is extracted from the MP wiki hosted by NPS and illustrates the structure 

of an MP event grammar rule. Since MP leverages high-level pseudo code, the MP user 

has tremendous flexibility in selecting the words to represent behaviors. 
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Figure 2.  The Anatomy of the Event Grammar Rule. Adapted from [48]. 

Table 9 is also extracted from the MP wiki and illustrates event patterns, relating 

natural language descriptions to their expressions as MP event grammar rules [48].  

Table 9.   Monterey Phoenix Event Patterns. Adapted from [48].  
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The MP analyzer on Firebird utilizes the small scope hypothesis introduced by 

Jackson:  

Most flaws in models can be illustrated by small instances, since they arise 
from some shape being handled incorrectly, and whether the shape 
belongs to a large or small instance makes no difference. So if the analysis 
considers all small instances, most flaws will be revealed… Key idea is 
specification of a scope, which bounds the sizes of the signatures, and 
exhaustive search for examples or counterexamples. [40, p. 15]  

MP offers the opportunity to refine higher level system behavioral descriptions 

into more detailed descriptions leading up to implementation in code, while maintaining 

traceability across the models of the system and environment. This results in more 

complete behavior descriptions of all relevant components and connectors. As explained 

by Auguston and Whitcomb, “Event traces can be effectively generated from the event 

grammar rules and then adjusted and filtered according to the composition operations 

[COORDINATE and SHARE ALL] in the schema” [32].  

MP does not replace system and software engineering enablers such as UML, 

SySML, and DODAF, but complements them and emphasizes the value of  using  

automated tools for immediate model verification [32]–[34]. As discussed by Object 

Management Group, the UML definition of a behavior is “a specification of events that 

may occur dynamically over time” [31]. 

The representation of a behavior as an event in an executable MP model aligns 

with the UML definition of a behavior. However, MP is used to not only model the 

system under analysis, but also the behavior of elements in the environment, using the 

same framework, which sets the conditions to re-use parts or all of the model. As 

described by Auguston and Giammarco:  

An event may be considered an abstraction of an activity, and may have 
duration greater than or equal to zero. System behavior is modeled as a set 
of events with two basic relations: precedence (PRECEDES) and inclusion 
(IN). PRECEDES and IN are partial ordering relations. Unordered events 
may occur concurrently. [48] 
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Fortunately, tools such Firebird and Eagle6 are available and allow the model 

author to execute the model and inspect the results using architectural views that can be 

extracted from the executed MP model. These views help to portray aspects or elements 

of the architecture that are relevant to the concerns that the view intends to address, and 

to the stakeholder interested in those concerns. Each view is an answer to a question (or a 

group of questions), and provides the rationale for the development of tools, patterns, 

templates, and conventions needed to create the level of abstraction that reduces 

complexity while retaining meaningful content [3], [32]–[34].  

One of the earliest steps in the FP counting process is identifying the application 

boundary. The ThreeMetrics methodology employing MP assists in unambiguously 

identifying the boundaries and interactions of the system, user, and environment. 

Function Point transactional function types can be thought of as markers of the 

external boundary. Once the boundary and interactions have been described, the FPA 

practice can be used to determine the unadjusted FP count.  

Use cases, FPA, and behavioral modeling frameworks such as MP can help 

stakeholders understand the technical and programmatic characteristics of the system and 

environment, by effectively creating views that contain the information they need. The 

ThreeMetrics methodology employing MP extracts analysis enablers from the model, 

such as use cases, and informs programmatic metrics of effort and size estimates. 

This research utilizes a subset of the MP tool set focused on ROOTs, 

COORDINATE, and SHARE ALL. Once MP has been used to unambiguously describe 

the behaviors of the system under analysis and its interactions with the environment, the 

resulting MP descriptions of boundaries and interactions (represented by COORDINATE 

and SHARE ALL in the MP schema ) can be related to estimation and costing practices. 

This will be discussed as part of the ThreeMetrics methodology in Chapter III of this 

dissertation.  
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F. ESTIMATES FOR INTEGRATION TESTING 

Software testing is a challenging and resource intensive activity. Nowhere is that 

more visible than during integration testing, when organizations as well as systems have 

to interact. Sommerville states “software testing involves running an implementation of 

the software with test data. You examine the outputs of the software and its operational 

behavior to check that it is performing as required. Testing is a dynamic technique of 

verification and validation” [10, p. 517]. 

Verification and validation are not synonymous terms, but they are symbiotic and 

can effectively communicate the status and relevance of a system through its architecture 

model. Boehm very simply but powerfully synopsized the difference “Am I building the 

product right? Validation: “Am I building the right product?” [52]. 

Once individual component testing is complete, the next step is to integrate the 

components into a system, and then assess whether or not the system behaves as 

expected. The value of integration testing is its focus on information flowing across 

interfaces to modules. The challenge is writing integration test cases that can confirm that 

the observed behavior is the expected behavior. Pfleeger and Atlee note “the integration 

is planned and coordinated so that when a failure occurs, we have some idea of what 

caused it. In addition, the order in which components are tested affects our choices of test 

cases and tools” [23, p. 390]. 

Many practitioners experience the challenge of testing within the schedule and 

resource constraints of their organization. Testing is often not allocated the appropriate 

amount of time for thorough investigation. Brooks provides “the following rule of thumb 

for scheduling a software task: 1/3 planning, 1/6 coding, 1/4 component test and early 

system test, 1/4 system test, all components in hand” [53, p. 20]. 

MP models generate all event traces within the given limit, and the resulting event 

traces can be inspected to help developers identify undesired behaviors, and as blueprints 

to create test cases. TutorialsPoint synopsizes the definition of a software test case: “A 

test case is a document, which has a set of test data, preconditions, expected results and 
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post conditions, developed for a particular test scenario in order to verify compliance 

against a specific requirement” [54].  

Additionally, a test case includes test steps, test data that supports what the test 

case needs to achieve, expected results, and information about the environment. Once the 

test case is executed, time is needed to analyze the results. An integration test case 

addresses the interface and data flow between modules or systems, focusing on what 

happens at the boundary.  

The creation of integration test cases takes effort. The event traces generated from 

an MP model provide solid detailed blueprints, which can be viewed as guidelines for the 

creation of the integration test cases, and inform technical and programmatic decision 

making.  

The MP Analyzer on Firebird is an implementation of the MP event trace 

generator, which utilizes the small scope hypothesis. The event traces are contained by 

simulating a limited number of iterations, usually three or less [32]. 

Auguston and Whitcomb leveraging Jackson discuss MP as an executable 

architecture model and state: 

It is possible to obtain all valid event traces within a certain limit. Usually 
such a limit (scope) may be set by the maximum total number of events 
within the trace, or by the upper limit on the number of iterations in 
grammar rules (recursion in the grammar rules can be limited in similar 
ways). For many purposes a modest limit of a maximum 3 iterations will 
be sufficient. This process of generating and inspecting event traces for the 
schema is similar to the traditional software testing process. [32] 

A generic description of all behaviors (the MP schema) is more difficult to 

evaluate than an example of behavior (a particular event trace). Tools such as Firebird 

assist in these evaluations by generating an exhaustive set event traces, usually for a 

scope of one, that can then be inspected to and used to inform integration test cases.  

In the COCOMO II output, integration and test costs are part of the phase effort 

for construction. In this phase, breakdown of the total construction is 76% of the software 

development effort. Using the waterfall lifecycle definitions for COCOMO II the 
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breakdown is as follows: Product Design 17%; Programming 58%; Integration and Test 

25% [55]. Once the UFP count is input into COCOMO II, 25% of the resulting 

Construction phase output for schedule is used in the for this calculation. The work week 

is assumed to be five days per week and eight hours per day for each staff person. 

Assuming that six test cases per day can be executed, the number of test cases can be 

executed in the allocated time for test and integration, is calculated. This does provide 

information for next steps to inform decision making, both technically and 

programmatically. The first step is to revisit the model and ensure that the behaviors of 

the application are accurately captured. If the model is correct, then the next step is to 

determine if there is any flexibility in the schedule and resources to support additional 

testing. If the number of test cases is unrealistic, it becomes clear that only a subset of 

event traces can be selected for testing.  
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III. METHODOLOGY 

The ThreeMetrics methodology applies elements of the function point counting 

methodology to MP architecture models, to extract an unadjusted function point count 

from MP models. It then uses the unadjusted FP count to calculate estimated effort thru 

the COCOMO II cost methodologies. The MP model itself is a rich source of information 

and can be used to extract event traces that inform integration test case development, as 

well as views of instances of the architecture model that can be inspected for accuracy, 

and facilitate communication with stakeholders. MP models are executable, taking 

advantage of available automated tools, such as Firebird, which was used for this 

research. The overall methodology illustrated in Figure 3 is synopsized in the following 

steps, each of which is then discussed in more detail. 

 

Figure 3.  The ThreeMetrics Methodology Overview 
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Step 1: Determine stakeholder questions to be answered and gather existing 

documentation 

Step 2: Identify scope and application boundary  

Step 3: Develop MP model  

Step 4: Extract Data Functions count from MP model 

Step 5: Extract Transactional Functions count from MP model  

Step 6: Extract integration test cases and views from MP model 

Step 7: Determine the Unadjusted Function Point (UFP) count  

Step 8: Calculate effort estimate 

Step 9: Finalize analysis and provide results to stakeholders 

(1) Step 1: Determine stakeholder questions to be answered and gather 
existing documentation 

The first step of this methodology is to understand why the model is being 

developed and what existing documentation is available to assist in understanding the 

software system and the environment (everything but the system) with which it interacts. 

Questions or groups of questions related to a software system exist for a spectrum of 

stakeholders, as discussed in Chapter II Section C of this document. In order to address 

these questions, the first step is to gather all available source information supporting what 

the user expects the system to do.  

Practitioners of the FP counting methodology recommend using any 

documentation or architectural artifacts that may be available when performing a 

functional size measurement, such as requirements documents, entity relationship 

diagrams, interface agreements with descriptions of interfaces to/from other applications, 

or any other supporting documentation that provides insights into what the application is 

intended to do [9], [14]–[16].  
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This approach is consistent with software and system engineering analyses. An 

additional artifact that assists in defining the software system under assessment is the 

information assurance documentation that defines the accreditation boundary of the 

system, from which more detailed information of software components can be recovered.  

One way to capture the expectations of the users is by examining and refining 

functional requirements. Leveraging techniques from FP counting, functional 

requirements are assessed in order to shape what the application is intended to do, from 

the perspective of the user. The user of the application can be a human or another 

machine. This translation of often ambiguous natural language requirements and 

supporting artifacts into more precise FP counting representations is the most challenging 

part of Step 1. Recall, the FP terms transactional functions, data functions, and functional 

complexity determined by the number of DETs, FTRs, and RETs from Chapter II Section 

B of this document. Using a combination of information from multiple FP counting 

manuals, and leveraging the support documentation, the next sequence in Step 1 is to 

begin to decompose ambiguous natural language of the functional requirements into 

precise activities that can be related to FP transactional, data functions, and assist in 

confirming the boundary of the application. This is the most challenging part of the 

methodology.  

(2) Step 2: Identify scope and application boundary  

The information gathered in Step 1 assists with understanding what the 

application is intended to do at a high level, from the perspective of the user. Step 2 

utilizes this information to determine the scope of the count from the FP counting 

methodology perspective, i.e. is it a Development Project FP count, an Enhancement 

Project FP count, or an Application FP count. Most importantly, Step 2 utilizes this 

information to identify the boundary of the application to be counted, a critical step in 

any software or system engineering analysis when trying to distinguish the system under 

analysis and the environment with which it interacts.  

As discussed Chapter II Section B, understanding the type of project and FP count 

from an FPA perspective assists in understanding which application is maintaining the 
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data and confirming the boundary of the software system or component of the system to 

be counted.  

The supporting documentation of different software systems has various artifacts 

to describe the systems, but these artifacts are often not consistent and may be 

incomplete. However, at a minimum, a simple box and arrow type of architectural 

representation can usually be recovered. Since the natural language of the functional 

requirements may still be ambiguous, a quick inspection of the box and arrow 

representation can be performed to confirm that the boundary of the application to be 

counted is correct and clearly visible, that all currently known data functions are present, 

and all currently known transactional functions are present. It also supports the 

decomposition of the application to be counted into the ILFs and an Internal Abstracted 

Application (IAA), which represents everything except the ILFs. The use of an IAA was 

to represent behaviors between the ILFs, EIFs and IAA in order to account for the UFP 

count for data functions, and will be discussed in Step 3.  

Figure 4 illustrates the ThreeMetrics box and arrow simplified view. The red 

dotted line represents the boundary. While this is high level architecture view does not 

adequately represent the software system behaviors needed to extract the UFP count, it is 

a practitioner’s tool to set the conditions to develop an MP model that does represent the 

behaviors of the data functions, the behavior of the internal abstracted application, and 

the behavior of the user in more detail. This view resonates with non-technical 

stakeholders, who provide the go/no-go to proceed with additional analyses.  
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Figure 4.  ThreeMetrics Box and Arrow Simplified View 

The next activity in this step is to further refine the behaviors of the application, 

based on the documentation gathered in Step 1. By far the most difficult part of this 

activity is fully understanding the behaviors of the software system, to determine the 

DET counts, ensure that the RETs within an FTR are appropriately identified, and ensure 

that the transactional functions (EI, EO, EQ) are also identified. Although more detailed 

examples demonstrating this methodology will be provided later on in this document, for 

the purposes of explaining the methodology, a short example will accompany the next 

several steps. 

When identifying candidate EIs, EQs, and EOs, it is critical to establish a 

convention to keep track of all the information. As illustrated in Figure 5, adapted from 

[56], one approach is to capture the name of the transactional function, the FTR 

associated with it, and the DETs counted for that transaction. Consider the EQ named 

State Drop Down, outlined by a blue dotted line. Associated with this EQ is the number 
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of FTRs (1) and the number of DETs (2), and the identification of the FTR, in this case 

Golf Courses ILF. For this EQ, the information is synopsized as EQ: State Drop Down, 

(1,2), Golf Courses.  

 

Figure 5.  Tee Time Generic Box and Arrow View. Adapted from [56].  

This EQ was identified from the source information associated with the Tee Time 

application, which is described in more detail in Chapter IV. A representative screen for 

the application, Golf Courses List, is illustrated in Figure 6. On this screen and from the 

narrative accompanying the screen in the source information, the State Dropdown EQ 

was identified, and the behaviors associated with this transactional function were also 

identified, and counted as DETs.  
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Figure 6.  Golf Courses List Screen. Adapted from [56]. 

For EQ: State Drop Down, the behaviors include: (1) Click on state arrow, (2) 

State list display returned. There is one FTR (Golf Courses ILF), and 2 DETs (Arrow 

Click, State field) identified. Therefore, the user is interacting with the application, 

querying for information that is resident in the Golf Course ILF. The information is then 

displayed back to the user, on the screen. This process is continued until all transactional 

functions are clearly identified. 

Similarly, for data functions, the Record Element Type associated with an ILF or 

EIF is elicited from the supporting documentation gathered in Step 1. Each ILF and EIF 

is assigned a name, and the data elements associated with each are delineated and 

counted. Any logical groupings of data from the user’s perspective, internal to the EIF or 

ILF, is documented as an RET. In this example, there is one RET and 11 DETs 

represented in Figure 5 as Golf Courses ILF (1, 11).  

In a manual unadjusted FP count, the next step would be to determine the 

functional complexity based on functional complexity tables provided by the IFPUG 

counting manual [9], such as Table 4 for an EQ.  

To keep track of all this information, Table 10 provides a synopsis of the 

elementary process (EP), in this case an EQ, described as State Drop Down, which 
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references the Golf Course ILF (I). There is 1 FTR and 2 DETS, represented as (1, 2). 

Therefore, the complexity (Complex) is considered Low, and that corresponds to 3 UFPs 

for this EQ.  

Table 10.   UFP Count for EQ State Drop Down 

 
 

(3) Step 3: Develop MP Model 

Once the application boundary is drawn (see the red dotted line) and candidate 

transactional and data functions are identified, the conditions are set to enrich the box and 

arrow representation with high level behavioral descriptions of the software system being 

counted, derived from the source information in Step 1. Figure 5, while helpful, soon 

becomes unwieldy, containing so much information that it defeats its original purpose of 

simplification. Although this view is an initial representation of the behaviors of the 

software system, representing the model in MP was much more efficient.  

MP events can be represented in pseudocode, using formalisms to refine the event 

descriptions. MP events include interactions between actors (e.g., ROOT User, ROOT 

ILF). UFPs represent interaction abstractions and can be extracted from COORDINATE 

and SHARE ALL MP constructs. The descriptions of interactions can be captured in a 

high level MP COORDINATE that effectively says “do something, and then something 

else happens” in pseudocode. Hidden within the high level COORDINATE are all the 

other interactions that are represented in FPA by DETs and FTRs, referenced to assess a 

complexity. The structure of events visible in an MP model provides the source for 

assigning weights. The nested COORDINATE will have composite events, and the 

number of composite events will affect the weight. The weights can be derived from the 

complexity of interactions and FPA functional complexity rating. These calculations can 
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be done by automated tools that relate the MP model to COCOMO calculations, such as 

http://csse.usc.edu/tools/MP_COCOMO [57]. 

Recall, the MP terminology from Chapter II Section E. User, ILFs, EIFs, and an 

IAA in Figure 4 are identified as ROOTs. The ILFs, EIFs and User each interact with the 

Internal Abstracted Application ROOT, but do so in slightly different ways. The 

interaction of the ROOTs is represented by composition operations COORDINATE and 

SHARE ALL.  

The use of an IAA was to represent behaviors between the ILFs, EIFs and IAA to 

account for the UFP count for data functions. Had the interactions been between the user 

and the ILFs and EIFs, these interactions would have accounted for the contributions of 

the transactional functions to the UFP count, but not those of the data functions. SHARE 

ALL was chosen to represent interactions between the IAA and ROOTs for data function 

types. It should be noted that if enough information were available on the data functions, 

then nested COORDINATE could be also used to represent the interactions between the 

ILF or EIF and the IAA. 

COORDINATE was chosen to represent the high level interactions (EI, EO, EQ) 

of the transactional functions, and then nested interactions (nested COORDINATE) to 

represent the DETs that determine the functional complexity rating. This functional 

complexity rating corresponds to an UFP count in the IFPUG tables, and was used as 

multiplied with the COORDINATE, resulting in the same UFP count as a manual UFP 

count for that transactional function. The initial UFP count extracted from the MP model 

and the manual UFP count are very close, if not identical. However, the MP executable 

model is amenable to stepwise refinement, and the count of COORDINATEs and 

SHARE ALLs can be extracted from the model using manual inspection and automated 

tools. This will be discussed in more detail in Step 7. 

Continuing with the EQ State Drop Down transactional function type, the MP 

schema for this transactional function type and the nested operations associated with 

DETs is described in Figure 7. 

 

http://csse.usc.edu/tools/MP_COCOMO
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Figure 7.  MP Schema Description for EQ State Drop Down Example 

The naming convention of the ROOTs is to assist with managing the complexity 

of the descriptions of ROOT behaviors and the interactions between the ROOTs. For 

example, the user interacts with the TT Internal Abstracted Application, to inquire on 

data that is in the Golf Courses ILF. ROOT TT_GC_ILF represents the abstracted 

combination of the Golf Courses ILF and the TT Internal Abstracted Application 

(referred to hereafter as TT), both of which are internal to the Tee Time application 

boundary.  
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(4) Step 4: Extract Data Functions count from MP model 

The behaviors of an ILF or EIF data function can be represented as interactions 

with the internal abstracted application using nested COORDINATE if sufficient 

information is available, or SHARE ALL if information is incomplete or sparse.  

COORDINATE requires two events and SHARE ALL requires a single shared 

event. SHARE ALL is the simplified form of interaction, when who initiates the 

interaction and who is the recipient is not relevant. The MP representation of data 

function type interaction is illustrated in Figure 8 for SHARE ALL.  

 

Figure 8.  MP Schema For Data Function: SHARE ALL 

A similar representation using COORDINATE is illustrated and in Figure 9. 

 

Figure 9.  MP Schema For Data Function: COORDINATE 

The MP schemas illustrated in Figures 8 and 9 can be manually inspected. There 

is one SHARE ALL in Figure 8 and one COORDINATE in Figure 9. The 

COORDINATE or the SHARE ALL corresponds to one data function type, in this case 

Golf Courses ILF. Once the number of COORDINATEs or SHARE ALLs are extracted 
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from the schema, the IFPUG tables are used to determine the functional complexity 

rating and corresponding UFP size.  

(5) Step 5: Extract Transactional Function Count from MP model  

Each EI, EQ, or EO transactional function is represented in the MP model by a 

COORDINATE composition operation. The number of interactions nested within the 

COORDINATE are directly related to the functional complexity and size values in the 

IFPUG tables.  

For example, if an EQ = 1 COORDINATE, then the next step is to inspect the 

number of interactions within that COORDINATE. If the number of interactions between 

one IAA (ILF/EIF) ROOT combination and the User is 15 or less, this corresponds to a 

functional complexity of Low.  

Multiplying the EQ by the functional size value (in this case 3 for Low) will equal 

the number of UFPs for that EQ. This requires a specific understanding between the 

parent COORDINATE and the nested interactions representing the DETs. Otherwise, a 

generic approach is to arbitrarily assign a functional complexity value of average to the 

transactional functions, until a more refined understanding of the behaviors can be made.  

(6) Step 6: Extract Integration Test Cases and Views from MP Model 

MP provides a rich source of information that informs effort. The UFP count 

extracted from an MP model will be discussed in Step 7.  

All executable architecture models, including MP, must be inspected, tested, and 

debugged before users can extract information from them. Once the model is considered 

correct, then there is a greater degree of confidence that all scenarios and use cases 

generated by the model are also correct. Each scenario or use case can then inform a test 

case, to support implementation.  

MP can be used to automatically produce event traces, which represent examples 

of behaviors (e.g., scenarios, use cases if the environment is included). Recall that an 

event trace represents an example of a particular execution of the system extracted from 

the architecture that is specified by an MP schema. In the case of executable MP models, 
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all event traces within a given limit can be generated. Auguston states that “usually such 

a limit (scope) is set as the upper limit on the number of iterations in grammar 

rules” [33]. 

For some MP models, Scope 1 is sufficient because increasing the scope will 

result in a large number of event traces that may not show anything new or notable, and 

will not improve chances of exposing errors in testing. The executable model may take 

too long to run, resulting in a poor return on investment of time and effort. Auguston and 

Whitcomb leverage Jackson’s work on the small scope hypothesis and observe  

in the case of MP models it is possible to automatically generate all event 
traces within the given scope (exhaustive testing). Careful inspection of 
generated traces (scenarios/use cases) may help developers identify 
undesired behaviors. Usually it is easier to evaluate an example of 
behavior (particular event trace) than the generic description of all 
behaviors (the schema). The Small Scope Hypothesis states that most 
errors can be demonstrated on relatively small counterexamples. [3] 

An MP schema describes all behaviors generically, whereas as an instance of a 

behavior is represented in an event trace. Tools such as Firebird assist in the evaluation of 

behaviors by generating an exhaustive set of event traces for a scope. The event traces 

can individually inspected to determine which ones may be best suited to serve as a 

blueprint for integration test case generation.  

As an example, the MP schema for EQ State_drop_down was executed using 

Firebird, with an event trace illustrated in Figure 10 that was extracted from the model. 

This is one transactional function from the It’s Tee Time [56] example, which will be 

discussed in Chapter IV.  
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Figure 10.  MP Event Trace 

The event trace in Figure 10 illustrates the behaviors of User and TT_GF_ILF and 

the interactions between them, which can be used to identify the steps in a test case. For 

this event trace, the user’s input results in two events: The user clicks the arrow for state 

drop down (Click_state_arrow_dropdown); and the user should receive state list display 

(Receive_state_list_display). Receive state list display is a description of the expected 

system’s output.  

Brooks observed that 25% of total effort is dedicated to integration testing [53]. 

Wolff indicates that approximately six integration tests per day can be executed for a 

large application, such as an electronic commerce system [58]. This does not include the 

amount of time required to create or analyze the test case.  

The amount of time for integration test case construction varies by the complexity 

of the interface being tested and the identification of test data. The time to create 

integration test cases ranges from several hours for a simple test case to several days for a 

more complicated one. Estimates are not only numbers; they provide useful information 

for informed decision making regarding the planning, implementation overall, and 
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management of a real software project. If 500 integration test cases are needed to ensure 

all behaviors of a system are covered, but an organization is resource-constrained or 

schedule-constrained and can only execute 50 integration test cases, which integration 

test cases should be selected? The process and criteria for selecting a subset of test cases 

is a topic for future work. 

(7) Step 7: Determine the Unadjusted Function Point (UFP) Count 

When specificity related to the application is unclear, one approach is to initially 

assign an average functional complexity rating to all transactional and data function 

types. Another approach is to consider how transactional and data function type 

complexity are rated in similar applications and assign that complexity to the application 

of interest. When there is clear information associated with the application, the functional 

complexity and size tables can be applied directly. The total UFP is the sum of the 

transactional function type UFP count and the data function type UFP count. 

 
Total UFP = Total Data Function Type UFP Count + Total Transactional Function Type 
UFP Count 
 

Continuing with the Tee Time example and focusing on the Golf Courses ILF 

(GC_ILF), on SHARE ALL is identified through manual inspection of the MP schema in 

Figure 8. From the source information that will be discussed in the complete example in 

Chapter IV, there is one RET and 1–19 DETs associated with this ILF, so that the 

functional complexity is Low, as illustrated in IFPUG Table 11.  

Table 11.    Functional Size for Data Functions. Adapted from 
[9, Sec. 1, p. 13, Table 2].  
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Table 12 illustrates that a functional complexity of Low for an ILF corresponds to 

a functional size of 7 UFP in a manual count. 

Table 12.   Functional Complexity For ILF and EIF. Adapted from 
[9, Sec. 1 p. 13 Table 1]. 

 
 

Using that size, multiply the SHARE ALL by the # UFP/SHARE ALL, where the 

# UFP/SHARE ALL is obtained from the functional size, in this case 7.  

 
Golf Courses ILF = (1 SHARE ALL) * 7 UFP/COORDINATE = 7 UFPs 
 

The same approach can be applied for the MP schema in Figure 9. Inspecting this 

schema shows that there is there is one COORDINATE. Based on the source information 

in Chapter IV, there is one RET and 1–19 DETs associated with GC_ILF, so that the 

functional complexity is low and from Table 11, and the functional size is 7 UFP from 

Table 12.  

 
Golf Courses ILF = (1 COORDINATE) * 7 UFP/COORDINATE = 7 UFPs 

The data functions pose an interesting challenge. If minimal information is 

available regarding the ILF or EIF, one approach to estimating the size is to assume an 
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average functional complexity and associated functional size for an ILF and EIF (10 and 

7 UFP, respectively) from Table 11 and 12. This is applicable whether using SHARE 

ALL or COORDINATE. However, if the source information associated with an ILF or 

EIF is sufficient to describe the number of RETs and the number of DETs, a nested 

COORDINATE can be used for those data functions adequately described. Otherwise, 

defaulting to SHARE ALL with an average functional complexity and size until more 

information is available is the preferred starting point. The full It’s TeeTime example in 

Chapter IV includes sufficient information to represent data function behavior using the 

nested COORDINATE composition operation. 

The UFP for transactional function types, such as the EQ: State Drop Down, also 

begin by manual inspection of the MP schema. In Figure 9, there is one COORDINATE, 

and nested within the COORDINATE are two ADDs. The COORDINATE corresponds 

to one transactional function, in this case an EQ. Each of the ADDs corresponds to a 

DET. From the source information and its representation in Figure 5, there is one FTR, 

Golf Courses ILF. Once the number of COORDINATEs and DETs are extracted from the 

schema, the IFPUG  tables can be used to identify functional complexity and size for this 

transactional function. 

As illustrated in Table 13, 0–1 FTRs and 1–5 DETs correspond to a functional 

complexity rating of Low for this EQ. A Low functional complexity rating corresponds to 

a functional size of 3 UFP. The EQ COORDINATE is then multiplied by the # 

UFP/COORDINATE, where the # UFP/COORDINATE is obtained from the functional 

size for each transactional function, in this case an EQ.  

Table 13.   Functional Complexity and Size for EQs. Adapted from 
[9, Sec.1, p. 19, Table 7 and Table 8]. 
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EQ State Drop Down = (1 COORDINATE) * 3 UFP/COORDINATE = 3 UFPs 
 

For an EI, EQ, or EO represented by a COORDINATE, once the number of 

interactions nested within the COORDINATE (one ADD for each DET) is determined, it 

can be related to the functional size. 

Recall, the IFPUG counting tables for functional complexity and functional size, 

illustrated in Table 13.  

One approach to relate the data functions to the MP architecture’s model language 

would be to use SHARE ALL for interactions between the internal component of the 

application being measured and the External Interface Files and the Internal Logical 

Files.  

As discussed earlier, when insufficient information is known about the application 

to be measured, an initial UFP count can be obtained by assuming an ‘average’ functional 

complexity for transactional and data functions. The functional complexity and functional 

size values for average are not the same for EI, EO, EQ, ILF and EIF. If each is 

represented by a COORDINATE or SHARE ALL, one approach would be to average the 

EO, EI, and EQ complexity and sizing values from the IFPUG tables and use them for 

each COORDINATE associated with an EI, EO, EQ, and for each SHARE ALL 

associated with an ILF or EIF. For the functional size of a data function (i.e., ILF or EIF) 

consider: 

Average = 8.5   i.e., (10+7)/2 

Use the average functional size value of 8.5 for any data function interaction 

captured by SHARE ALL. 

The same can be said for the transactional functions, where EI and EQ have the 

same value and EO differs: 

Average = 4.5   i.e., (4 +5+4)/3  

Use the average functional size value of 4.5 for every transactional function 

described by a COORDINATE.  
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(8) Step 8: Calculate Effort Estimate 

As discussed in Chapter II Section A of this dissertation, COCOMO II can utilize 

UFP counts or software lines of code as an input to estimate effort. UFP counts can be 

transformed into lines of code based on the software implementation language used. This 

can be done manually leveraging the equations in [4] and [5], or by using the COCOMO 

II automated tool [57]. The implementation in [57] has been extended by Madachy and 

Auguston to not only accept an UFP direct input, but also an MP file from which the UFP 

count is extracted.  

Figures 11 and 12 illustrate the options available for the MP-COCOMO II 

extended implementation, where an UFP can be manually inserted into the model or a 

MP .mp file can be uploaded. There are many options available as inputs to the 

COCOMO II model. The options used for this research are discussed in this section. A 

more complete description of the input options can be found in [4]. 

For Software Size Sizing Method, the FP selection represents leads to the 

unadjusted function point input. Software sizing options include Sizing Method and Input 

Method. The sizing method can be either FPs or SLOCs. Input Method can be Direct or 

File Input.  

If Input Method selected is Direct, then the number of UFPs are inserted in the 

corresponding field. A language is then selected from options including Basic, C, 

Database-default, JAVA, PERL, 3rd Generation Language. JAVA was selected for this 

research.  

If Input Method selected is File Input, then the option of Select Input File is 

offered and an MP schema file with extension .mp can be uploaded.  

Once the UFP are inserted and a language option is selected, then the other inputs 

to the model can be selected. For this research Nominal was selected for all options, 

Maintenance selected was off, and a software labor rate of $20,000 was used. 

Consider the following example for a Direct input of 75 UFPs extracted from an 

MP schema. Options selected are intended to result in a nominal level of effort. 
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Additionally, Maintenance is off, and software labor rate is assumed to be $20, 000. The 

resulting estimate is illustrated in Table 14 Nominal Option Estimates. 

Table 14.   Nominal Option Estimates 

 
 

Figure 11 illustrates all of the nominal options selected and Maintenance off, for a 

direct input of 75 UFPs using the JAVA implementation language.  

 

Figure 11.  Nominal Effort Options Selected, Maintenance Off 
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The results are captured in Figure 12, where Effort is 13.4 Person-months, 

Schedule is 8.6 months, Cost is $268,205, and Total Equivalent Size is 3975 SLOC. 

 

Figure 12.  Nominal Options Selected, Maintenance Off, Results 

Recall that the SLOC can be calculated manually from an UFP count for a given 

software language. For this example, using the values in Table 2 for JAVA, (75 UFPs * 

53 SLOC/UFP) = 3975 SLOC. This is the same number from the COCOMO II model 

results in Figure 12.  
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(9) Step 9: Finalize Analysis and Provide Results to Stakeholders  

As illustrated in Table 11, for every stakeholder, there is at least one distinct way 

of representing the answers to his or her question. Each stakeholder is interested in a 

slightly different representation of the same information, and each representation must 

accurately represent a segment of the whole set of information. Some of this information 

can be represented in well-known architecture views such as box and arrow diagrams, 

activity diagrams, or sequence diagrams. Other information can be represented as high-

level pseudo code or ranges of cost estimates. What is important is the accuracy and 

traceability of the information in each representation and its ability to communicate with 

a stakeholder.  

One of the criticisms of UML is that its views can be created independently of 

each other, with no guarantee that a change in one view is reflected in another. A similar 

criticism has been levied against DODAF. However, imagine an architecture modeling 

world without these commonly understood languages and frameworks. UML and 

DODAF provide mechanisms to capture and represent information in a way that allows 

multiple stakeholders to reason about complicated concepts. MP offers a similar 

capability. It does not compete with UML or DODAF, but enhances the toolset available 

to the architectural modeling community. As an executable architecture model, the MP 

schema and resulting event traces can be inspected and debugged until the model is 

considered correct. MP Analyzer on Firebird exports views of the executed event traces, 

including sequence diagrams and a box and arrow view that assisted in this research.  

Each step in the application of the ThreeMetrics methodology results in the 

representation of information that can be used to inform multiple stakeholders. Figure 13 

is an example of an MP event trace for EQ: State Dropdown, representing a sequence 

diagram that highlights the interaction between roots.  



 65 

 

Figure 13.  Event Trace View: Sequence Diagram 

Figure 14 is an integrated view of the manual and MP schema UFP count 

calculation. The left side is an example of the UFP done through the current FPA 

counting methodology and the calculation of the UFP for the EQ transactional function. 

The right side of Figure 14 shows the representation of the EQ transactional function in 

an MP schema, with a COORDINATE and ADDs representing the transactional function 

and the complexity of transactional function EQ. Using both approaches, the UFP count 

for the EQ transactional function is the same. 
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Figure 14.  Integrated View of Manual and MP Schema UFP Count Calculation 

Recall that Figure 7 is the high-level pseudocode representation of this 

information. The box and arrow view in Figure 5 where EQ: State Dropdown highlighted 

is another view of the same information. The COCOMO II model output represents 

additional information on person-month effort, Schedule, and Cost. Each representation 

conveys relevant information to different stakeholders.  

For more information on the ThreeMetrics Methodology that has been 

communicated to a broad audience, see previous works in [59]–[68]. 
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IV. IMPLEMENTATION OF METHODOLOGY (EXAMPLES) 

This chapter applies each step of the ThreeMetrics methodology described in 

Chapter III to three examples. The Spell Checker and  Course Marks examples are 

derived from source information from Fenton and Bieman [69]. Variations of the It’s Tee 

Time application, or simply Tee Time, are derived from source information from Q/P 

Management group [56]. These examples were selected because they contain UFP 

answer keys that can be compared to the UFP count extracted from the MP model to 

validate the ThreeMetrics methodology. 

The Spell Checker implementation shows that the ThreeMetrics methodology can 

successfully extract an UFP from an MP model. The source information provided by this 

example is minimal, but does include an UFP answer key that includes functional 

complexity and size values for transactional and data function types.  

The Course Marks implementation further demonstrates that the ThreeMetrics 

methodology can extract an UFP count from an MP model. The source information 

provided is minimal, and it does include an UFP answer key, functional complexity, and 

size values for transactional and data function types.  

The Tee Time implementation highlights the value of detailed source information, 

which allows the exploration of four Courses of Action (COAs) to determine the UFP 

count using the ThreeMetrics methodology. Each COA increasingly applies details from 

the Tee Time source information to develop the MP model: 

COA 1:  

• Assumes limited source information and therefore average functional 
complexity and size values for each transactional and data function.  

• Inspects model for COORDINATE and SHARE ALL.  

COA 2:  

• Applies additional detail from source information to develop the MP model.  

• Assumes average functional complexity and size values for each transactional 
and data function.  
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• Inspects model for EI, EO, EQ, ILF, and EIF descriptive terms associated with 
COORDINATE and SHARE ALL.  

COA 3:  

• Applies additional detail from source information to develop the MP model.  

• Inspects MP model for each COORDINATE and for each ADD to determine 
functional complexity and size for transactional functions.  

• Inspects model for SHARE ALL and assumes average functional complexity 
and size for data functions. 

COA 4:  

• Applies all detail from source information to develop the MP model.  

• Inspects the MP model for each COORDINATE and for each ADD to 
determine functional complexity for each transactional and data function.  

 

The ThreeMetrics methodology is applied to each example in Sections A, B, and 

C. Since each example includes an UFP answer key in the source information, the 

ThreeMetrics UFP is then compared to the UFP answer keys to validate the methodology.  

Taken together, these implementation examples show that the ThreeMetrics 

methodology is able to extract an UFP count from MP’s executable architecture models 

for use in software cost estimation. Additionally, the ThreeMetrics methodology uses 

event traces to inform integration test estimates and decision making, and each step of the 

methodology provides meaningful information to stakeholders. 

A. SPELL CHECKER EXAMPLE 

(1) Step 1: Determine stakeholder questions to be answered and gather 
existing documentation 

The Spelling Checker example for the UFP estimate is derived from Fenton and 

Bieman. The source information was limited, and it includes the diagram reproduced in 

Figure 15, an UFP answer key, and the following Spell Checker specification 

information: 
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The checker accepts as input a document file and an optional personal 
dictionary file. The checker lists all words not contained in either of these 
files. The user can query the number of words and the number of spelling 
errors found at any stage during processing. [69, pp. 353]  

Due to the limited information in the specification, additional assumptions were 

made to represent the behaviors of the application in the MP model. The checker scans 

each word of the document. The checker checks if each word is in the spell checker’s 

dictionary. If it is, then the word is spelled correctly. If it is not, the application can check 

if the word is in the optional personal dictionary. If it is available in the personal 

dictionary, then the word is spelled correctly. If it is not spelled correctly based on the 

check with the personal dictionary, the checker provides a set of possible suggestions.  

 

Figure 15.  Spell Checker Example. Adapted from [69]. 

(2) Step 2: Identify scope and application boundary 

Based on the source information, the boundary of the application to be counted is 

identified and highlighted by the red dotted line in Figure 16. Dictionary ILF, Document 

EIF and Personal Dictionary EIF represent data functions. Transactional functions are 

represented by EI, EQ, and EO. Additionally, the ThreeMetrics methodology Box and 

Arrow view serves as a translation point between a function point counting architectural 

view and an MP architectural view, combining enough relevant information of each 

methodology to show the initial relationship between both methodologies. A 

corresponding MP term is identified and associated with each data function and 
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transactional function, using high-level pseudocode descriptions to refine the natural 

language descriptions and behaviors from the source information.  

The IAA for this example is identified as Spell Chk. The IAA and the Dictionary 

ILF, are internal to the boundary of the application being counted.  

 

Figure 16.  ThreeMetrics Box and Arrow View: Spell Checker 

(3) Step 3: Develop MP Model 

Once the box and arrow view assists in visualizing the boundary, the actors, the 

initial behaviors, and interactions, this information can then be further refined by 

capturing it in an MP model.  

The MP schema includes ROOTs for each Actor, the IAA named Spell Chk, and 

the composition operations that set the conditions to extract the UFP consistent with the 

methodology identified by the IFPUG counting process. The MP schema 

Spellchecker_3215 includes the entire model with several highlighted optional behaviors, 

in a format consistent with FP counting. Since there was such little source information 

provided, many assumptions were made in order to describe ROOT behaviors in the 
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model. The MP model was executed using the MP Analyzer on Firebird, resulting in 

3,215 event traces.  

The complete MP model can be found in Appendix A of this dissertation. An 

extract is included below to highlight the behaviors of the actors and their interactions.  

The user and the spell checker’s IAA behaviors are described in the following 

segment of the MP schema.  
 
ROOT User: (*  provide_document_file_name 
    [ provide_personal_dictionary ] 
   [inquire_on_number_of_processed_words]     
   [ check_number_of_processed_words ] 
    [inquire_on_number_of_errors_so_far] 
   [ check_number_of_errors_so_far ] 
   read_spelling_report 
    update_document_file  
   read_errors_message 
    [ update_personal_dictionary ] 
   [receive_misspld_wrd_rpt] 
   *) 
    no_more_errors 
   end_of_work; 
 
 
 
ROOT Spell_chk : (*  read_document_file 
    Process_document  
   [send_number_of_processed_words] 
   [ report_number_of_processed_words ] 
   [send_number_of_errors] 
   [ report_number_of_errors ] 
    provide_spelling_report 
    [report_misspld_wrd] 
   *) ; 
 
  Process_document:  read_dictionary  
      [ read_personal_dictionary ] 
      [ spelling_errors_detected ] 
 
      ; 
 

The EI transactional function type interaction between the user and the Spell_chk 

IAA is captured in the following EI COORDINATE. 
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/* EI: Doc_filename */ 
 
COORDINATE   $pdoc: provide_document_file_name  FROM User, 
   $rdoc: read_document_file   FROM Spell_chk 
  
DO  ADD $pdoc PRECEDES $rdoc;  

OD; 
 

 The interaction between the Spell_chk IAA and the Dictionary ILF is 

captured using SHARE ALL.  
 
 
ROOT Dictionary: (* read_dictionary *); 
 
 
Spell_chk, Dictionary     SHARE ALL read_dictionary; 
 
 

The .wng files, containing the MP schema and event traces, for the spell checker 

model will be available on the Monterey Phoenix wiki hosted by the Naval Post Graduate 

School [47]. 

(4) Step 4: Extract Data Functions Count from MP model 

When there is limited source information available, the data functions can be 

represented in the MP schema using the SHARE ALL composition operation. This 

describes the interactions between the IAA and the EIF (Document File and Personal 

Dictionary) and the ILF (Dictionary).  

Through manual inspection of the MP schema for the spell checker example, 3 

SHARE ALLs are counted. Since minimal source information is available, the functional 

complexity is assumed to be average.  

(5) Step 5: Extract Transactional Functions count from MP model 

Through manual inspection of the MP schema for the spell checker example, 

seven COORDINATEs are counted. These seven COORDINATES represent 

transactional function types (EI, EO, EQ). Since minimal source information is available, 

the functional complexity is assumed to be average.  
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(6) Step 6: Extract integration test cases and views from MP model 

Extracting event traces (i.e., use cases) from an MP schema sets the conditions to 

verify the model either through manual inspection of the event traces or by leveraging 

automated tools. The use cases serve as a valuable blueprint for the construction of 

integration test cases, which can then be used to support integration test estimates.  

For this example, Scope 1 was used and considered sufficient. The event traces 

were inspected and increasing the scope did not show anything new or notable, and 

would not improve chances of exposing errors in testing.  

Recall that the activities associated with a test case includes test steps, 

preconditions, test data that supports what the test case needs to achieve, expected results, 

post conditions, information about the environment, infrastructure to support execution of 

the tests, and analysis of the test results. The event traces generated from an MP model 

provide solid detailed blueprints, which can be viewed as guidelines for the creation of 

the integration test cases.  

Three examples of the 3215 event traces are illustrated in Figures 17–19. Figure 

17, Event Trace #1 of 3125, illustrates very simple but valid behaviors and interactions.  

 

Figure 17.  Firebird Spell Checker Event Trace 1 of 3215 
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Figure 18, Event Trace #1612 of 3215, illustrates an increasing number of 

behaviors and more complex interactions.  

 

Figure 18.  Firebird Spell Checker Event Trace 1612 of 3215 
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Figure 19, Event Trace #2311 of 3215, illustrates additional behaviors and 

interactions that are part pf the complete set of event traces.  

 

Figure 19.  Firebird Spell Checker Event Trace 2311 of 3215 

Recall, Brooks indicated he has “successfully used the following rule of thumb 

for scheduling a software task: 1/3 planning, 1/6 coding, 1/4 component test and early 

system test, 1/4 system test, all components in hand” [53, p. 20]. 

 

.25 x Total effort = Estimate for integration testing 
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As discussed by Wolff, approximately six integration tests per day can be 

executed for a large application, such as an electronic commerce system [58, p. 16]. This 

does not include the amount of time required to create the test case.  

Integration test estimates must account for test preparation, including the creation 

of the test cases and data sets or ensuring that the test environment is ready. The tests do 

not account for the time required to analyze the results of running the test cases. 

Additionally, the amount of time required to execute a test case is influenced by the 

method of execution, i.e., automated using scripts or manually executed, or a 

combination of both techniques. For several large DOD releases, typically between three 

and fifteen integration tests per day have been executed, depending on the complexity of 

the test and the amount of automation. For this research, the value of six test cases per 

day is used.  

In the COCOMO II results that will be discussed in Step 8, the Integration and 

Test costs are extracted from the phase effort for Construction. In this phase breakdown 

the total Construction is 76% of the software development effort. Using the waterfall 

lifecycle definitions for COCOMO II the breakdown is as follows: Product Design 17%; 

Programming 58%; Integration and Test 25% [55]. 

As is illustrated by Figure 21 in Step 8, the Construction phase is allocated 4.8 

months of schedule. Twenty-five percent of that time is 1.2 months. Those 1.2 months 

corresponds to 24 days (assuming 5 days per week and 8 hours per day for each staff 

person). Assuming 6 test cases per day, then 144 test cases can be executed in the 

allocated time for test and integration.  

There are 3215 event traces generated in the MP model. Not including the time 

required to create and analyze the test cases, this would require over 535 days to execute 

testing. Upon inspection of the event traces, some are significantly less complicated than 

others, so test case generation and execution based on each event trace will not require 

the same amount of effort.  

This does provide information for next steps to inform decision making, both 

technically and programmatically. The first step is to revisit the model, and ensure that 
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the behaviors of the application are accurately captured. If the model is correct, then the 

next step is to determine if there is any flexibility in the schedule and resources to support 

additional testing. Since 535 days is not supportable given current schedule constraints, 

only a subset of event traces can be selected for testing.  

If schedule does not support more than 144 test cases, then the event traces will 

need to be inspected and a subset selected for use in the creation of test cases. The criteria 

to determine what subset of event traces to select is a topic for future work.  

(7) Step 7: Determine the Unadjusted Function Point (UFP) count  

In the case of the example in [69], limited source information is available; so, an 

assumption is made that the functional complexity for both data and transactional 

function types corresponds to “average.”  

The ILF and EIFs identified for this example are: 

• ILF: Dictionary  

• EIF: Document_file 

• EIF: Personal_Dictionary 

Based on the tables from the IFPUG, an average functional complexity for an ILF 

corresponds to 10 UFPs, and an average functional complexity for an EIF corresponds to 

7 UFPs.  

Note that in the UFP calculation contained in the answer key to the example in 

[69], the UFP for data functions is shown to be  

(2 EIF) x (10 UFP/EIF) + (1 ILF x 7 UFP/ILF) for a total of 27 UFP 

According to the functional complexity and functional size values for averages 

from the IFPUG tables, the UFP count should be:  

(2 EIFs) x (7 UFP/EIF) + (1 ILF) x (10 UFP/ILF) = 24 UFP  

This difference is noted to point out that the UFP count used for data functions in 

this analysis will be 24 UFP. 
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For EI, EO, and EQ, each associated COORDINATE in the MP schema 

represents a transactional function, resulting in seven transactional functions for this 

example. For the transactional function UFP count, due to the limited source information 

available for this example, once again an average functional complexity rating is 

assumed. According to the IFPUG tables, the corresponding size for an average 

functional complexity rating is 4 UFPs for an EI, 4 UFP for an EQ, and 5 UFPs for an 

EO. The transactional functions are:  

• EI: Doc_filename  

• EI: Pers_diction_file  

• EQ: Inquire_errors_so_far  

• EO: No_ers_so_far_msg  

• EQ: Inquire_words_processed 

• EO: No_wrds_prosd_msg  

• EO: Misspld_wrd_rpt  

 

2 EI x 4 UFP/EI = 8 UFP 

2 EQ x 4 UFP/EQ = 8 UFP 

3 EO x 5 UFP/EO = 15 UFP 

This results in a total of 31 UFPs for transactional functions. The total UFP count 

for the Spell Checker example is 31 UFPs + 24 UFPs = 55 UFPs. Recall that for this 

example, the decision was made to use 24 UFPs for the data functions, so the total UFP is 

55 and not 58 as noted in [69]. 

One of the challenges of inspecting the MP schema is how to address the 

difference in average functional complexity for an ILF and EIF, if the pseudocode 

descriptions in the model do not include an ILF or EIF to distinguish between them. One 

approach is to average the ILF and EIF functional size and suggest that the SHARE ALL 

functional complexity and size for a data function corresponds to: 
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Low = (7+5)/2 = 6    

Average = (10+7)/2 = 8.5 

High = (10+15)/2 = 12.5 

This would result in (3 SHARE ALLs) x (8.5 UFP/SHARE ALL) = 25.5 UFPs 

The same approach used for data functions can be applied to transactional 

functions, where EI and EQ have the same value and EO differs: 

Low = (3+3+6)/3 = 3.5 

Average = (4 +5+4)/3 = 4.5  

High = (6+7+6)/3 = 6.5  

This would result in (7 COORDINATEs) x (4.5 UFP/COORDINATE) = 31.5 UFPs. 

Assuming an average complexity, the UFP counts for the data and transactional function 

types are: 

7 COORDINATEs x 4.5 = 31.5 UFP 

3 SHARE Alls x 8.5 = 25.5 UFP 

This results in a total count of 57 UFPs, which is slightly higher than the 55 UFPs used 

for this analysis. The remaining challenge is how to assign the low, average, and high 

functional complexity and size values to the number of COORDINATES, nested 

COORDINATES and SHARE ALLs, when the requirements are still maturing and the 

available information is insufficient to accurately describe the DETs, the number of 

FTRs, and the number RETs.  
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(8) Step 8: Calculate Effort estimate 

Using the total count of 55 UFPs, directly inputting into the COCOMO II tool, 

and selecting JAVA implementation language, Maintenance Off and a Cost per Person-

Month of $20,000, the nominal estimates are synopsized in Table 15, and supported by 

Figures 20 and 21.  

Table 15.   Nominal Effort Estimates 

 
 

Figure 20 illustrates the options available in the COCOMO II model. For this 

analysis, nominal inputs were selected with 55 UFPs manually inserted into the model.  

 

Figure 20.  Nominal Effort Options Selected, Maintenance Off 
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Figure 21 illustrates the results of the COCOMO II model for 55 UFPs manually 

inserted into the model.  

 

Figure 21.  Nominal Effort Options Selected, Maintenance Off, Results 

(9) Step 9: Finalize analysis and provide results to stakeholders. 

As discussed earlier, each stakeholder is interested in a slightly different view of 

the same set of information. However, these views must be consistent with each other, 

accurately representing a subset of the whole set of information.  

Each step of the ThreeMetrics methodology provides meaningful information to 

stakeholders. Programmers and engineers will appreciate the high-level pseudo code of 

the MP model in Appendix A, since it describes the behaviors of the application and its 

internal and external interactions. System and software engineers will appreciate the box 

and arrow format of the information in Figure 16. Cost analysts and program managers 

will appreciate the results of the COCOMO II model in Figure 21, as input to resourcing 
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requirements presented with each instance of the architecture model. Testers will 

appreciate the use cases (i.e. event traces), and sequence diagrams that inform integration 

test case creation.  

B. COURSE MARKS EXAMPLE 

(1) Step 1: Determine stakeholder questions to be answered and gather 
existing documentation 

The Course Marks System example for UFP estimate is derived from Fenton and 

Bieman [69, pp. 367–368, 546–548]. The source table used terms such as ‘simple’ and 

‘complex’ rather than ‘low’ and ‘high’. Based on the limited description associated with 

the specification, the requirements are listed with the following associated assumptions 

inserted next to the decompose requirement:  

• “The Course Marks application enables a lecturer to enter student marks for a 
predefined set of courses and students taking those courses” [69]. 
(Assumption: Lecturer is the User). 

• “Marks can be updated” [69]. (Assumption: This means Added. Changed or 
deleted are not explicitly called out in this example). 

• “Lecturers cannot change the basic course information, as the course lists are 
the responsibility of the system administrator” [69]. (Assumption: This 
information is provided via drop down menus for courses and then students. 

• The system is menu-driven. 

• The lecturer (User) selects from a choice of courses (EI: 
Menu_selct_course_choice)  

• The lecturer (User) then selects from a choice of operations (EI: 
Menu_selct_operation_choice), which are the following: 

• Enter coursework marks (EI: Coursework_marks) 

• Enter exam marks (EI: Exam_marks ). 

• Compute averages (Inquire on average grade, and display to user, EQ: 
Average). 

• Produce letter grades (Inquire on letter grades and display to user, EQ: 
Letter_grades). 
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• Display information to screen or printer (Report of list of the students, all 
known marks, grades, averages, EO: EO: List_of_students_marks. 

The source information found in [69] has been reproduced from the original and 

illustrated in Table 16. 

Table 16.   UFP Calculation. Adapted from Terms from Solutions and 
Function Point Complexity Weights [69, p. 547]. 

 
 

(2) Step 2: Identify scope and application boundary  

Based on the source information, the boundary of the application to be counted is 

identified and highlighted by the red dotted line in Figure 22. Course_file ILF represents 

the data functions, and there are no EIFs in this example. Transactional functions are 

represented by the EIs, EQs, and EOs. The ThreeMetrics methodology box and arrow 

view serves as a translation point between a FP counting architectural view and an MP 

architectural view, combining enough relevant information of each to show the initial 

relationship between both methodologies. A corresponding MP term is identified and 

associated with each data function and transactional function, using high-level 
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pseudocode descriptions to refine the natural language descriptions and behaviors from 

the source information.  

In this example, the boundary of the application to be counted is highlighted by 

the red dotted line, and the Course_file ILF and the IAA named Grade Collector are 

internal to the boundary.  

 

Figure 22.  ThreeMetrics Box and Arrow View: Course Marks 

(3) Step 3: Develop MP model  

Once the box and arrow view assists in visualizing the boundary, the actors, the 

initial behaviors, and interactions, this information can then be further refined by 

capturing it in an MP model. The complete MP model for Course Marks can be found in 

Appendix B. Excerpts that illustrate key points associated with the development of the 

MP schema are included in this section. 

The MP schema includes ROOTs for each Actor, the IAA named Grade 

Collector, and the composition operations that set the conditions to extract the UFP 

consistent with the methodology identified by the IFPUG counting process. The complete 
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MP schema Course Marks includes the entire model in a format consistent with FP 

counting.  

Since there was such little source information provided, several assumptions were 

made in order to describe ROOT behaviors in the model. The MP model was executed 

using Firebird, resulting in four event traces.  

User and the Grade_collector IAA behaviors are described in the following 

segment of the MP schema.  
 
ROOT User: (* select_course_choice 
    select_operation_choice     
    (enter_coursework_marks | modify_coursework_marks) 
   (enter_exam_marks | modify_exam_marks) 
   inquire_on_average_grade 
   inquire_on_letter_grade 
   receive_student_marks_report 
  *) 
    end_of_activity; 
 
 
ROOT Grade_collector: (* return_course_selection 
     return_operation_selection 
    receive_coursework_marks_input 
    receive_exam_marks_input 
    calculate_average_grade 
    write_average_grade 
    send_average_grade 
    equate_average_grade_to_letter 
    send_letter_grade 
    create_student_marks_report 
    send_student_marks_report 
     
   *) ; 
     

The EI transactional function type interaction between User and the 

Grade_collector IAA is captured in the following EI COORDINATE. 

 
 
/* EI: Menu_selct_course_choice */ 
COORDINATE  $pdoc: select_course_choice    FROM User, 
   $rdoc: return_course_selection    FROM Grade_collector 
 DO  ADD $pdoc PRECEDES $rdoc; OD; 
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The interaction between the Grade_collector IAA and the Coursefile ILF is 

captured using SHARE ALL.  
 
ROOT Coursefile:  (*  receive_coursework_marks_input   
      receive_exam_marks_input    
      update_student_exam_mark    
     update_coursework_mark     
     write_average_grade   
    *); 
 
 
 
Grade_collector, Coursefile SHARE ALL  receive_exam_marks_input,  
      write_average_grade,  
      receive_coursework_marks_input; 
 

The .wng files, containing the MP schema and event traces, for the Course Marks 

model will be available on the Monterey Phoenix wiki hosted by the Naval Post Graduate 

School [47]. 

(4) Step 4: Extract Data Functions count from MP model 

Through manual inspection of the MP schema for the Course Marks example, 

only one SHARE ALL is counted. This one SHARE ALL represents the data function 

type (ILF or EIF). This describes the interaction of the Grade_collector IAA and the 

Coursefile ILF. The functional complexity is provided by the source, which is reproduced 

in Table 16.  

(5) Step 5: Extract Transactional Functions count from MP model 

Through manual inspection of the MP schema for the Course Marks example, 

seven COORDINATEs are counted. The functional complexity is provided by the source, 

reproduced in Table 16.  

(6) Step 6: Extract integration test cases and views from MP model 

Extracting event traces (use cases) from an MP schema sets the conditions to 

verify the model either through manual inspection of the event traces or by leveraging 

automated tools [33].  
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Recall that a test case includes test steps, preconditions, and test data that supports 

what the test case needs to achieve, and also its expected results, post conditions, and 

information about the environment. The event traces generated from an MP model 

provide solid detailed blueprints, which can be viewed as guidelines for the creation of 

the integration test cases.  

For this example, Scope 3 was used. Four event traces were generated. The event 

traces generated for Scope 1 and 2 were inspected and increasing the scope did improve 

chances of exposing errors in testing. 

Figure 23, Event Trace #2 of 4, illustrates the behaviors for the Course Marks 

application. Figure 24, Event Trace #3 of 4, illustrates the behaviors for the Course 

Marks application with increasing detail. 

Figure 25, Event Trace #4 of 4, illustrates the behaviors for the Course Marks 

application with increasing detail, but slightly different behaviors represented in this 

snapshot of a specific use case. 

The use cases serve as a valuable blueprint for the construction of integration test 

cases, which can then be used to support integration test estimates. 
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Figure 23.  Firebird Course Marks Event Trace 2 of 4 
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Figure 24.  Firebird Course Marks Event Trace 3 of 4 
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Figure 25.  Firebird Course Marks Event Trace 4 of 4 
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Recall Brooks stated he has “successfully used the following rule of thumb for 

scheduling a software task: 1/3 planning, 1/6 coding, 1/4 component test and early system 

test, 1/4 system test, all components in hand” [53, p. 20].  

 

.25 x Total effort = Estimate for integration testing 

 

As discussed by Wolff, approximately six integration tests per day can be 

executed for a large application, such as an electronic commerce system [58, p. 16]. This 

does not include the amount of time required to create the test case.  

In the COCOMO II results that will be discussed in Step 8, the Integration and 

Test costs are part of the phase effort for Construction. In this phase breakdown, the total 

Construction is 76% of the software development effort. Using the waterfall lifecycle 

definitions for COCOMO II the breakdown is as follows: Product Design 17%; 

Programming 58%; Integration and Test 25% [55]. 

As is illustrated in Figure 27, the Construction phase is allocated 4.3 months of 

schedule. Twenty-five percent of that time is 1.075 months. The 1.075 months 

corresponds to 21.5 days (assuming 5 days per week and 8 hours per day for each staff 

person). Assuming that six test cases per day can be executed, then 129 test cases can be 

executed in the allocated time for test and integration.  

There are four event traces generated in the MP model. Not including the time 

required to create the actual test cases, this would require less than one day to execute all 

testing. This provides information for next steps to inform decision making, both 

technically and programmatically. It seems unreasonable to complete testing in one day 

on this application. The first step is to revisit the model, and ensure that the behaviors of 

the application are accurately captured, and the model is not overly constrained. If this 

model is truly representative of the application behaviors, then the next step is to 

determine how this additional time in the schedule can be re-allocated.  

Although Step 6 is focused on integration test case estimates, this step provides an 

opportunity to confirm that the executable model is not overly constrained. The data and 
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transactional function types are represented accurately, and the UFP is extracted and 

calculated correctly, but the event traces suggest the model may need to be revisited to 

ensure it is constructed properly while maintaining the same relevant information.  

(7) Step 7: Determine the Unadjusted Function Point (UFP) count  

The source information from [69], illustrated in Table 16, indicates that the data 

function for ILF Course_file has a functional complexity of “Complex”, which is 

assumed to mean High. This would then correspond to a functional size of 15, from the 

IFPUG tables. The UFP count for data functions is calculated as follows: 

 

(1 ILF x 15 UFP/ILF) = 15 UFPs 

 

Table 12 also indicates that the transactional functions have functional 

complexities of simple (assumed to mean low) and average. Using the information from 

[69] in Table 12 and the IFPUG counting tables, the UFP count for transactional 

functions is calculated as follows:  

 

(1EI x 3UFP/EI) + (1EI x 3UFP/EI) + (1EI x 3UFP/EI) + (1EI x 3UFP/EI) + (1EQ x 

3UFP/EQ) + (1EQ x 4UFP/EQ) + (1EO x 5UFP/EO) = 24 UFPs 

 

The total UFP count is 15 + 24 = 39 UFPs 

As discussed earlier, one of the challenges of inspecting the MP schema is how to 

address the difference in functional complexity for an ILF and EIF. One approach is to 

average the ILF and EIF functional size and suggest that the SHARE ALL functional 

complexity and size for a data function (i.e. ILF or EIF) corresponds to: 

Low = 6  i.e., (7+5)/2 

Average = 8.5  i.e., (10+7)/2 

High = 12.5   i.e., (10+15)/2 

This would result in (1 SHARE ALL) x (12.5 UFP/SHARE ALL) = 12.5 UFPs.  
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The same approach used for data functions can be applied to transactional 

functions: 

Low = 3.5   i.e., (3+3+6)/3 

Average = 4.5  i.e., (4 +5+4)/3  

High = 6.5  i.e., (6+7+6)/3 

This results in an UFP total of 36, which is slightly higher than the 34 UFP count 

found in the source information.  

 

(1EI x 3.5 UFP/EI) + (1EI x 3.5 UFP/EI) + (1EI x 3.5 UFP/EI) + (1EI x 3.5 UFP/EI) + 

(1EQ x 3.5 UFP/EQ) + (1EQ x 4.5 UFP/EQ) + (1EO x 5UFP/EO) = 24 UFPs 

 

According to the Appendix Solutions to Selected Exercises of [69], the total UFP 

is 35. According to the solution table in [69] the total UFP is 34. Based on the 

information provided in the example, the ILF complexity is ‘complex’ which is assumed 

to correspond to a functional complexity rating of high. For an ILF with a High 

functional complexity rating the corresponding number of UFPs should be 15, not 10 as 

is provided in the solution to the example. Therefore, the UFP count used for this analysis 

is  

 

(4EI*3UFP/EI) + (1EQ x3UFP/EQ) + (1EQ x 4UFP/EQ) + (1EO x 5UFP/EO) + (1ILF x 

15UFP/ILF) = 39 UFPs 

 

(8) Step 8: Calculate effort estimate 

Using the total UFP count of 39, and directly inputting into [57] for a JAVA 

implementation language, Maintenance Off and a Cost per Person-Month of $20,000, 

results in the nominal estimates synopsized in Table 17 and supported by Figures 26 

and 27. 
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Table 17.   Nominal Effort Estimates 

 
 

Figure 26 illustrates the options available in the COCOMO II model. For this 

analysis, nominal inputs were selected with 39 UFPs manually inserted into the model.  

 

Figure 26.  Nominal Effort Options Selected, Maintenance Off  
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Figure 27 illustrates the results of the COCOMO II model for 55 UFPs manually 

inserted into the model.  

 

Figure 27.  Nominal Effort Options Selected, Maintenance Off, Results 

(9) Step 9: Finalize analysis and provide results to stakeholders 

As discussed earlier, each stakeholder is interested in a slightly different view of 

the same set of information. However, these views must be consistent with each other, 

accurately representing a subset of the whole set of information.  

Each step of the ThreeMetrics methodology provides meaningful information to 

stakeholders. Programmers and engineers will appreciate the high-level pseudo code of 

the MP model in Appendix B, since it describes the behaviors of the Course Marks 

application and its internal and external interactions. System and software engineers will 

appreciate the box and arrow format of the information in Figure 22. Cost analysts and 
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program managers will appreciate the results of the COCOMO II model in Figure 27, as 

input to resourcing requirements presented with each instance of the architecture model. 

Testers will appreciate the use cases (i.e., event traces) in Figures 23–25, and the 

sequence diagrams view that inform integration test case creation.  

C. IT’S TEE TIME EXAMPLE  

The It’s Tee Time golfing application example, or simply Tee Time, is derived 

from the It’s Tee Time case exercise. Tee Time source information is protected by 

copyright, and has been graciously provided by Q/P Management Group, Inc [56] for use 

in this research. This case study contains detailed source information and an UFP count 

answer key for the exercise. It has been expanded upon, with guidance and input from 

Ms. Lori Holmes-Limbacher.  

The Tee Time example includes a rich amount of source information, which is 

used to explore four Courses of Action (COAs). Each COA represents a different model 

and analysis of the behaviors of the Tee Time application, based on interpretation of the 

source data. This demonstrates the key aspect of the research by showing that by 

comparing outputs an analysis can be done on the UFP count extracted from the MP 

model, how the count for each COA compares to the original case study UFP count, and 

how the UFP and use cases extracted from the MP model affect the effort estimates.  

In COA 1, the goal is to calculate the UFP count for all transactional functions 

and data functions assuming an average complexity (i.e., functional complexity and size 

from the IFPUG tables) for all transactional and data functions. The transactional 

functions are extracted based on manual inspection of the model for the number of 

COORDINATES. The data functions are extracted based on manual inspection of model 

for the number of SHARE ALLs.  

In COA 2, the goal is to calculate the UFP count for all transactional functions 

and data functions, and extract transactional functions based on manual inspection of the 

model for the number of COORDINATES. Data function types are extracted based on 

manual inspection of model for the number of SHARE ALLs. The COORDINATEs are 

distinguished by words such as “inquire” or “view” for EQ, “add”, “change”, or “delete” 
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for EI, and “calculate” or “buy” for EO. For data functions, search for the number of ILFs 

associated with SHARE ALL and number of EIFs associated with SHARE ALLs. 

Assume an average functional complexity and size for each transactional and data 

function type. The IFPUG tables are then used to assign functional complexity and size 

values for each transactional and data function type. 

In COA 3, the goal is to calculate the UFP count for all transactional functions 

and data functions, extracting transactional function types based on manual inspection of 

the MP model for the number of COORDINATES, and utilizing nested COORDINATEs 

(i.e., counting the number of ADDs per COORDINATE) to more accurately represent the 

DETs. The data function types are extracted based on manual inspection of model for the 

number of SHARE ALLs. The IFPUG tables are then used to assign functional 

complexity and size values for each transactional and data function type. 

In COA 4, the goal is to calculate the UFP count for all transactional functions 

and data functions, using nested COORDINATEs to represent both function types. The 

process includes extracting transactional functions and data functions based on manual 

inspection of the MP model for the number of COORDINATES, and utilize nested 

COORDINATEs (count the number of ADDs per COORDINATE). The IFPUG tables 

are then used to assign functional complexity and size values for each transactional and 

data function type. 

COA 1 and COA 2 will both leverage the same MP SCHEMA TeeTime_COA1_COA2.  

COA 3 will leverage the MP SCHEMA named MP SCHEMA TeeTime_ 

Nested_COORDINATEs_SHARE ALL.  

COA 4 will leverage the MP SCHEMA TeeTime_Nested COORDINATEs_Trans_Data. 

Steps 1 and 2 of the ThreeMetrics methodology are common to COA 1, 2, 3 and 

4. Step 3 of the ThreeMetrics methodology is common to COAs 1 and 2. Steps 4 through 

9 illustrate how additional detail in the source data affect the UFP count.  
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(1) Step 1: Determine stakeholder questions to be answered and gather 
existing documentation 

Organization A is performing application counts as part of internal cost and 

management controls. The application It’s Tee Time, source information protected by 

copyright, is being counted and includes several prototyped screens and high-level 

functional requirements. The following figures and descriptions comprise the source 

information associated with this application, provided by Q/P Management Group, Inc 

[56]. Additional refinement of the requirements resulting in the detailed UFP count was 

obtained through discussions with a subject matter expert. 

Figure 28 illustrates the It’s Tee Time screen. Behaviors associated with this 

screen are: 

• Press Start to continue to the next screen or 

• Press exit to leave the system 

 

Figure 28.  It’s Tee Time Screen. Adapted from [56]. 
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Figure 29 illustrates the Tee Time Main Menu screen. Behaviors associated with 

this screen are: 

• Golf Courses List takes you to Golf Course List screen 

• Golf Courses Maintenance takes you to Maintain Golf Course screen 

• Scoreboard takes you to Scoreboard screen 

• Tee Time Shopping takes you to TeeTime Shopping screen 

 

Figure 29.  Tee Time Main Menu Screen. Adapted from [56]. 
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Figure 30 illustrates the Golf Course List Screen. Behaviors associated with this 

screen are: 

• You are required to enter a State and City from the Drop downs 

• Hitting Display shows the list on the bottom of the page 

• Drop downs come from cities and states in the Golf Courses database 

• City Drop down is based on what State was entered 

• Select a Golf Course from the list to go to Golf Course Detail screen 

 

Figure 30.  Golf Course List. Adapted from [56]. 
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Figure 31 illustrates the Golf Course Detail Screen. Behaviors associated with this 

screen are: 

• Select BACK to return to selection screen 

• Select DIRECTIONS to navigate to MapQuest 

• Select TEE TIME Reservation to go to that screen  

 

Figure 31.  Golf Course Detail. Adapted from [56]. 
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Figure 32 illustrates the Tee Time Reservation screen. Behaviors associated with 

this screen are: 

• ID and Name are carried from the previous screen 

• Use hard coded DATE drop down to select a date 

• Click DISPLAY to show current tee times on the bottom of the page 

• Enter in new tee times on blank rows and click ADD 

• Change information in existing tee times and click CHANGE 

• Highlight Time field and click DELETE to remove tee time 

 

Figure 32.  Tee Time Reservation Screen. Adapted from [56]. 
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Figure 33 illustrates the Maintain Golf Courses screen. Behaviors associated with 

this screen are: 

• Enter information in blank screen and click ADD for new courses 

• Enter ID or Name and click DISPLAY to show information 

• Change information and click CHANGE for modifications 

Click DELETE to remove (edit to make sure there are no tee times) 

 

Figure 33.  Maintain Golf Courses Screen. Adapted from [56]. 
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Figure 34 illustrates the Scoreboard screen. Behaviors associated with this screen 

are: 

• Selecting from the Main Menu results in this display 

• Enter information in a blank line and click ADD for new scores 

• Change information and click CHANGE for modifications 

• Highlight Name and Click DELETE to remove  

 

Figure 34.  Scoreboard Screen. Adapted from [56]. 
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Figure 35 illustrates the Tee Time Shopping screen. Behaviors associated with 

this screen are: 

• Selection from the Main Menu results in this screen 

• Initial display shows products and unit prices from Marketing system 

• As quantities are entered, the totals are calculated 

• Once all data is entered click BUY to send a record to purchasing 

• Click View button to display a picture of the product  

 

Figure 35.  Tee Time Shopping. Adapted from [56]. 
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Figure 36 illustrates the Tee Time Merchandise Example screen. Behaviors 

associated with this screen are: 

• Press Back to return to the Tee Time Shopping screen 

• Press Exit to leave the system 

 

Figure 36.  Tee Time Merchandise Example Screen: Mug. Adapted from [56]. 
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Figure 37 illustrates the Tee Time database layout for Internal Logical Files, 

identified in the Tee Time source data. 

Figure 37.  Database Layout: Internal Logical Files. Adapted from [56]. 

Figure 38 illustrates the Tee Time database layout for the External Interface File, 

identified in the Tee Time source data. 

Figure 38.  Database Layout: External Internal Interface Files. Adapted from [56]. 

The answer key for the Tee Time application was included in the source 

information provided by Q/P Management Group [56] for this research. The total UFP 

count is 88. 
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(2) Step 2: Identify scope and application boundary  

After the source information is studied and interpreted, the next step is to create a 

view of the information that can be used to identify the boundary of the application being 

counted, represent the Internal Abstracted Application, in this case TT, represent the EIFs 

and ILFs, and the EIs, EOs, EQs. This view  is represented by Figure 39.  

 

Figure 39.  ThreeMetrics Box and Arrow View: Tee Time 

The initial abstraction illustrated in Figure 39 does not contain enough 

information to complete the MP model, but it does contain enough information to begin 

to construct key abstracted portions of it. There are a total of 10 ROOTs that can be 

identified based on the User, the EIF, and the application being counted. The Tee Time 

application is being counted, and is contained within the application boundary depicted 

by the red dashed line. Internal to the Tee Time application are three ILFs (Golf Courses 
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ILF, Scoreboard ILF, Tee Times ILF) and the Internal Abstracted Application referred to 

as TT (everything not the ILFs). The ROOTs are:  

• ROOT User  

• ROOT TT_GC_ILF 

• ROOT TT_Teetimes_ILF 

• ROOT TT_Scoreboard_ILF 

• ROOT TT_Merchandise_EIF 

• ROOT TT 

• ROOT GC_ILF 

• ROOT Teetimes_ILF 

• ROOT Scoreboard_ILF 

• ROOT Merchandise_EIF  

 

Five of the ten ROOTs have been created to address the interactions between the IAA 

and the Internal Logical Files and External Interface Files, to support the data function 

UFP count. ROOT TT_GC_ILF, ROOT TT_Teetimes_ILF, ROOT TT_Scoreboard_ILF, 

and ROOT TT_Merchandise_EIF represent the combination of behaviors between the 

Internal Abstracted Application (IAA) and the ILFs and EIFs as seen by ROOT User. For 

example, ROOT_TT_GC ILF represents the combined behaviors of the TT IAA and the 

Golf Courses ILF (GC_ILF), as the ROOT_TT_GC_ILF interacts with the behaviors of 

the User. 
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(3) Step 3: Develop MP model  

COA 1 and COA 2 share the same MP model named MP SCHEMA 

TeeTime_COA1_COA2, but the MP model is inspected differently, resulting in different 

UFP counts. COA 2 takes advantage of source information to create more precise 

descriptions of behaviors, and then uses key words in the inspections process to assist in 

determining the overall UFP count.  

COA 3 uses MP SCHEMA TeeTime_ Nested_COORDINATEs_SHARE ALL 

named introduces the use of nested COORDINATEs for transactional function types. The 

data functions are still represented by SHARE ALL.  

COA 4 leverages MP SCHEMA TeeTime_Nested COORDINATEs_Trans_Data. 

The MP schema from COA 3 is re-used for transactional function types, but the 

behaviors of the data function types are represented using nested COORDINATEs.  

COA 1 and COA 2: For COA 1 and COA 2, the behaviors of each ROOT are 

captured by specific activities associated with each ROOT, as described by the 

requirements, supporting information, and the ThreeMetrics box and arrows 

representation. The interactions between the User, the IAA, and the ILFs and EIF are 

captured by utilizing the COORDINATE composition operation for the transactional 

functions and SHARE ALL composition operation for the data functions. An average 

functional complexity and size are assumed for the transactional and data function types. 

The behaviors of the ROOTs are described using specific words associated with 

transactional function types EI, EO, EQ.  

• If the words inquire_on are used in the description of a behavior, then the 
behavior is associated with an EQ. 

• If the words input_add, input_change, or input_delete are used in the 
description of a behavior, then the behavior is associated with an EI. 

• If the word calculate is used in the description of a behaviors, then the 
behavior is associated with an EO. 

The assignment of an EI, EO, or EQ to a COORDINATE is based on the high-

level pseudo code used to describe the behaviors. This becomes important when 
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distinguishing between the IFPUG functional complexity and size values of an EI, EO, or 

EQ.  

The ROOT User behaviors (representing the User) and the ROOT TT_GC_ILF 

behaviors (representing the combined, relevant behaviors of the IAA and Golfcourses 

ILF), and the ROOT TT_Merchandise_EIF (representing the combined, relevant 

behaviors of the IAA and Merchandise EIF) are described in the following extract of the 

MP Schema. 

 
ROOT User: (* ( (inquire_on_state_data 
     inquire_on_city_data 
     inquire_on_golfcourse_list 
     (* (inquire_on_golfcourse_detail | go_back )*) 
     inquire_on_reservation_display 
     (input_add_reservation_data | 
 input_change_reservation_data |  
 input_delete_reservation_data)  
     inquire_on_maintain_golfcourses 
     (input_add_maintain_golfcourses_data | 
  input_change_maintain_golfcourses_data |  
 input_delete_maintain_golfcourses_data) ) 
    inquire_on_scoreboard_display 
     (input_add_scoreboard_data | 
 input_change_scoreboard_data |  
 input_delete_scoreboard_data)  
    inquire_on_shopping_display 
    (* (inquire_on_product_display 
 calculate_total_amount 
 buy_product )*) 
             
         | exit)  
     *); 
 
ROOT TT_GC_ILF: (* (get_state_result 
     get_city_result 
     get_golfcourse_list_result 
     get_golfcourse_detail_result 
     get_maintain_golfcourses_result 
     (*(add_maintain_golfcourses_data | 
   change_maintain_golfcourses_data |  
   delete_maintain_golfcourses_data)*) )  
             
  
    *); 
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ROOT TT_Merchandise_EIF: ( get_shopping_display_result  
        (*(get_product_display_result     
     get_calculated_total_amount  
      send_calculated_amount_to_purchasing)*) 
     );  

Behaviors representing the interaction between the User and the TT_GC_ILF and 

the User and the TT_Merchandise_EIF are captured in COORDINATEs 1-20 of the MP 

schema for transactional functions.  

Since COORDINATE 1 includes the words inquire_on, it is considered an EQ 

transactional function. Its functional complexity and size are found in the IFPUG tables 

for an EQ transactional function. 

 
/* COORDINATE 1: Interaction between the User behaviors and TT/Golfcourses ILF behaviors */ 
 
COORDINATE $a:inquire_on_state_data    FROM User, 
    $b:get_state_result   FROM TT_GC_ILF 
 
DO ADD $a PRECEDES $b;OD; 
 

COORDINATE 6 includes the words input_add. It is considered an EI 

transactional function, and its functional complexity and size are found in the IFPUG 

tables for an EI. 

 
/* COORDINATE 6: Interaction between the User behaviors and TT/Teetimes ILF behaviors */ 
 
COORDINATE  $k:input_add_reservation_data   FROM User, 
   $l:add_reservation_data   FROM TT_Teetimes_ILF 
 
 DO ADD $k PRECEDES $l; OD; 
 

COORDINATE 19 includes the word calculate. It is considered an EO 

transactional function, and its functional complexity and size are found in the IFPUG 

tables for an EO transactional function. 

 
 
/* COORDINATE 19: Interaction between the User behaviors and TT/Merchandise ILF behaviors */ 
 
COORDINATE $kk:calculate_total_amount   FROM User, 
  $ll:get_calculated_total_amount   FROM TT_Merchandise_EIF 
    
DO ADD $kk PRECEDES $ll;OD; 



 113 

The complete MP Schema for COA 1 and COA 2 are found in Appendix C 

sections 1 and 2, respectively. 

COA 3: The MP schema for COA 3 introduces the use of nested 

COORDINATEs. The behaviors of each ROOT are captured by specific activities 

associated with each ROOT, as described by the requirements, supporting information, 

and the box and arrows representation.  

For COA 3, the interactions between the IAA, the ILFs and EIF are still captured 

by utilizing the SHARE ALL composition operation for the data functions. An average 

functional complexity is still assumed for the data functions.  

However, COA 3 begins to leverage the detailed Tee Time source information to 

represent additional behaviors of each DET internal to each transactional function type, 

in the form of each ADD in a nested COORDINATE. Since sufficient information is 

available to determine the actual functional complexity and size, it is no longer necessary 

to assume an average functional complexity and size for the transactional functions.  

The methodology used in COA 1 and 2 to create the MP schema is used as a 

starting point in COA 3. The behaviors of the ROOTs continue to be described using 

specific words associated with transactional functions EI, EO, EQ. The description of the 

behaviors is then expanded, to take advantage of composite events in the ROOTs and the 

additional behaviors of DETs. The behaviors associated with each DET are captured in 

the ROOTs, and the interaction is represented as an ADD within the nested 

COORDINATE. 

The ROOT User behaviors (representing the User) and the ROOT TT_GC_ILF 

behaviors (representing the combined, relevant behaviors of the IAA and Golfcourses 

ILF) are described in the following extract of the MP Schema for COA 3. 
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 ROOT User: (* ( (inquire_on_state_data 
     inquire_on_city_data 
     inquire_on_golfcourse_list 
     (* (inquire_on_golfcourse_detail | go_back )*) 
     inquire_on_reservation_display 
     (input_add_reservation_data | 
 input_change_reservation_data |  
 input_delete_reservation_data)  
     inquire_on_maintain_golfcourses 
     (input_add_maintain_golfcourses_data | 
 input_change_maintain_golfcourses_data |  
 input_delete_maintain_golfcourses_data) ) 
    inquire_on_scoreboard_display 
     (input_add_scoreboard_data | 
 input_change_scoreboard_data |  
 input_delete_scoreboard_data)  
    inquire_on_shopping_display 
    (* (inquire_on_product_display 
 calculate_total_amount 
 buy_product )*) 
        | exit)  
   *); 
 
  
inquire_on_state_data: click_state_arrow_dropdown  receive_state_list_display; 
ROOT TT_GC_ILF: (* (get_state_result 
     get_city_result 
     get_golfcourse_list_result 
     get_golfcourse_detail_result 
     get_maintain_golfcourses_result 
     (*(add_maintain_golfcourses_data | 
   change_maintain_golfcourses_data |  
   delete_maintain_golfcourses_data)*) )  
              
    *); 
  
get_state_result: receive_state_arrow_prompt send_state_list_display; 
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The composite events inquire_on_state_data from ROOT User and 

get_state_result from ROOT TT_GC_ILF contain additional behaviors which are 

captured in COORDINATE 1 of the MP SCHEMA for COA 3.  

COA 3 COORDINATE 1 represents the interaction between the User composite 

event behavior inquire_on_state_data and the TT_GC_ILF composite event behavior 

get_state_result. The interactions of the behaviors of the composite events are represented 

in the nested COORDINATE, with 2 ADDs representing 2 DETs. One FTR is assumed, 

based on the source information. For the EI COORDINATE #12, two FTRs are 

referenced, but since it would not affect the functional size or complexity, it was 

represented in the model as 1 FTR.  

 
/* COORDINATE 1: Interaction between the User behaviors and TT/Golfcourses ILF behaviors , and nested 
COORDINATE with 2 ADDs representing 2 DETs */ 
 
COORDINATE $a:inquire_on_state_data    FROM User, 
   $b:get_state_result    FROM TT_GC_ILF 
  
DO 
  COORDINATE 
 
  $ax: click_state_arrow_dropdown  FROM $a,  
  $bx: receive_state_arrow_prompt  FROM $b, 
   $axx: receive_state_list_display   FROM $a, 
   $bxx: send_state_list_display   FROM $b 
 DO 
     
  ADD $ax PRECEDES $bx; 
   ADD $bxx PRECEDES $axx;  
 OD; 
OD; 

The two ADDs in COORDINATE 1 represent two DETs. The MP schema for 

COA 3 contains 20 COORDINATEs each with a functional complexity and size 

determined by the number of ADDs representing DETs. 1 FTR is used for the DETs 

associated with each COORDINATE.  

As in COAs 1 and 2, the data functions for COA 3 are represented by SHARE 

ALL with an average functional complexity and size. The complete MP model for COA 

3 is described in Appendix C Section 3.  
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The MP schema for COA 4 is named SCHEMA It Is Tee Time Nested 

COORDINATEs For transactional and data Functions. COA 4 leverages all the detailed 

source information from It’s Tee Time, to represent the additional behaviors internal to 

each transactional function and data function, in the form of each DET in a nested 

COORDINATE. Since sufficient information is available to determine the actual 

functional complexity and size, it is not necessary to assume an average functional 

complexity and size for transactional functions or data functions.  

The methodology used in COA 1 and 2 and 3 to create the MP schema is used as 

a starting point in COA 4. The behaviors of the ROOTs continue to be described using 

specific words associated with transactional functions EI, EO, EQ. The descriptions take 

advantage of composite events in the ROOTs and the additional behaviors of DETs. Each 

DET is represented as an ADD within the nested COORDINATE of a transactional 

function.  

COA 4: For COA 4, the same approach used for transactional function types is 

applied to the data function types, using additional descriptive terms to describe the data 

function types. COA 4 contains COORDINATEs 21–24, representing the data functions.  

For example, ROOT TT represents the relevant behaviors of the IAA, including 

the composite event “request”. ROOT GC_ILF represents the relevant behaviors of the 

Golfcourses ILF including the composite event “respond.”  

COORDINATE 21 represents the interaction between the TT IAA and the 

GC_ILF, and is a nested COORDINATE with 11 ADDs representing 11 DETs.  
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ROOT TT: ( * (request | no_action ) * ); 
 

request: request_GC_id  request_GC_coursename request_GC_address 
request_GC_city  request_GC_state request_GC_zip 

 request_GC_phone request_GC_description request_GC_slope 
 request_GC_fees  request_GC_requirements  
 request_TT_id  request_TT_coursename request_TT_date_repeating  
 request_TT_teetime request_TT_no_players 
 request_TT_no_holes  request_TT_golfer_name request_TT_credit_card_type  
 request_TT_credit_card_number request_TT_phone_number 
 
 request_scoreboard_golfer_name   request_scoreboard_coursename 
 request_scoreboard_date  request_scoreboard_slope
 request_scoreboard_score  request_Merch_product_name 
 request_Merch_price   request_Merch_picture; 
 
 
ROOT GC_ILF: (*( respond | no_action)*); 
 
respond: respond_GC_id respond_GC_coursename  respond_GC_address 
respond_GC_city  respond_GC_state respond_GC_zip respond_GC_phone
 respond_GC_description  respond_GC_slope respond_GC_fees 
 respond_GC_requirements; 

 
/* COORDINATE 21: Interaction between the TT IAA and the Golf Courses ILF, and nested COORDINATE 
with 11 ADDs representing 11 DETs */ 
 
 
COORDINATE    $oo: request    FROM TT, 
   $pp: respond    FROM GC_ILF 
    
DO 
 
 COORDINATE 
 
  $oox1: request_GC_id    FROM $oo, 
  $ppx1: respond_GC_id    FROM $pp, 
  $oox2: request_GC_coursename    FROM $oo, 
  $ppx2: respond_GC_coursename   FROM $pp, 
  $oox3: request_GC_address   FROM $oo, 
  $ppx3: respond_GC_address    FROM $pp,  
  $oox4: request_GC_city    FROM $oo, 
  $ppx4: respond_GC_city    FROM $pp, 
  $oox5: request_GC_state    FROM $oo, 
  $ppx5: respond_GC_state     FROM $pp, 
  $oox6: request_GC_zip    FROM $oo, 
  $ppx6: respond_GC_zip    FROM $pp, 
  $oox7: request_GC_phone   FROM $oo, 
  $ppx7: respond_GC_phone   FROM $pp, 
  $oox8: request_GC_description   FROM $oo, 
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  $ppx8: respond_GC_description   FROM $pp, 
  $oox9: request_GC_slope    FROM $oo, 
  $ppx9: respond_GC_slope    FROM $pp, 
  $oox10: request_GC_fees    FROM $oo, 
  $ppx10: respond_GC_fees    FROM $pp, 
  $oox11: request_GC_requirements   FROM $oo, 
  $ppx11: respond_GC_requirements  FROM $pp 
   
 DO   
  ADD $oox1 PRECEDES $ppx1; 
   ADD $oox2 PRECEDES $ppx2;  
  ADD $oox3 PRECEDES $ppx3; 
  ADD $oox4 PRECEDES $ppx4; 
  ADD $oox5 PRECEDES $ppx5; 
   ADD $oox6 PRECEDES $ppx6;  
  ADD $oox7 PRECEDES $ppx7; 
  ADD $oox8 PRECEDES $ppx8; 
  ADD $oox9 PRECEDES $ppx9; 
   ADD $oox10 PRECEDES $ppx10;  
  ADD $oox11 PRECEDES $ppx11; 
  
 OD; 
OD; 
 

The complete MP schema for COA 4 can be found in Appendix C, section 4. Due 

to the size of the MP schemas for COA 3 and COA 4, the strategy to execute the model 

was modified, without compromising the integrity of the model or the UFP counts 

associated with them.  

In order to run the model on Firebird, the model had to be broken into several 

parts. This does not affect the UFP count, but does allow the execution of the model in 

order to obtain event traces, which inform test case estimates. The MP model was split 

into two separate models; one to address the data function types, and the other to address 

the transactional function types.  

The original MP models for COA 3 and COA 4 had a set of roots TT_xxx and a 

set of roots without TT prefix. Since these two sets did not interact, running them 

together on Firebird significantly increased the time to execute them because all possible 

combinations had to be produced. Running them together did not provide any additional 

value; as a result, they were run separately, so that event traces could be produced and 

inspected. 
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As mentioned earlier, this was done to execute the models on Firebird, however 

the UFP captured in the model is unaffected.  

The .wng files, containing the MP schema and event traces, for Tee Time will be 

available on the Monterey Phoenix wiki hosted by the Naval Post Graduate School [47]. 

(4) Step 4: Extract Data Functions count from MP model 

COA 1: By manually inspecting the MP schema in Appendix C Section 1, a total 

of 4 SHARE ALLs can be extracted from the model.  

COA 2: By manually inspecting the MP schema in Appendix C Section 2, a total 

of 4 SHARE ALLs can be extracted from the model. By inspecting the model for ILFs 

and EIFs associated with the SHARE ALLs, 3 ILFs and 1 EIF are extracted for data 

functions. 

COA 3: By manually inspecting the MP schema in Appendix C Section 3, a total 

of 4 SHARE ALLs can be extracted from the model. By inspecting the model for ILFs 

and EIFs associated with the SHARE ALLs, 3 ILFs and 1 EIF are extracted for data 

functions. 

COA 4: By manually inspecting the MP schema in Appendix C Section 4, a total 

of 4 COORDINATEs can be extracted from the model for data function types. By 

inspecting the model for ILFs and EIFs associated with the COORDINATEs, 3 ILFs and 

1 EIF are extracted for data functions. 

(5) Step 5: Extract Transactional Functions count from MP model  

COA 1: By manually inspecting the MP schema in Appendix C Section 1, a total 

of 20 COORDINATEs representing transactional functions can be extracted from the 

model.  

COA 2: By manually inspecting the MP schema in Appendix C Section 2, a total 

of 20 COORDINATEs representing transactional functions can be extracted from the 

model. The transactional functions can be distinguished by inspecting the model for 

specific words used to describe the behaviors associated with each COORDINATE. For 
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example, words like “inquire” or “view” are associated with an for EQ; “add”, “change”, 

or “delete” for an EI; and “calculate” or “buy” for an EO.  

COA 3: By manually inspecting the MP schema in Appendix C Section 3, a total 

of 20 COORDINATEs representing transactional functions can be extracted from the 

model. The transactional functions can be distinguished by inspecting the model for 

specific words used to describe the behaviors associated with each COORDINATE. For 

example, words like “inquire” or “view” are associated with an for EQ; “add”, “change”, 

or “delete” for an EI; and “calculate” or “buy” for an EO.  

COA 4: By manually inspecting the MP schema in Appendix C Section 4, a total 

of 20 COORDINATEs representing transactional functions can be extracted from the 

model. The transactional functions can be distinguished by inspecting the model for 

specific words used to describe the behaviors associated with each COORDINATE. For 

example, words like “inquire” or “view” are associated with an for EQ; “add”, “change”, 

or “delete” for an EI; and “calculate” or “buy” for an EO.  

(6) Step 6: Extract integration test cases and views from MP model 

Extracting event traces (i.e. use cases) from an MP schema sets the conditions to 

verify the model either through manual inspection of the event traces or by leveraging 

automated tools. The use cases serve as a valuable blueprint for the construction of 

integration test cases, which can then be used to support integration test estimates.  

For COA 1, Scope 1 was used and considered sufficient. The event traces were 

inspected and increasing the scope did not show anything new or notable, and would not 

improve chances of exposing errors in testing.  

Utilizing the MP analyzer tool on Firebird and Scope 1, 864 Event Traces were 

generated. Recall that a test case includes test steps, preconditions, test data that supports 

what the test case needs to achieve, expected results, post conditions, and information 

about the environment.  
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The event traces generated from an MP model provide solid detailed blueprints, which 

can be viewed as guidelines for the creation of the integration test cases. Three examples 

of the 864 event traces are illustrated in Figures 40–42.  

Figure 40 represents event trace #1 of 864. While early on in the execution of the 

model, is still has detail describing the behaviors of the Tee Time application.  

 

Figure 40.  Event Trace #1 of 864 
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Figure 41 represents event trace #400 of 864. The event trace begins to reflect the 

complexity of the behaviors. 

 

Figure 41.   Event Trace #400 of 864 
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Figure 42 represents event trace #864 of 864. The event trace represents 

additional behaviors and additional complexity.  

 

Figure 42.   Event Trace #864 of 864 
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Recall Brooks stated “successfully used the following rule of thumb for 

scheduling a software task: 1/3 planning, 1/6 coding, 1/4 component test and early system 

test, 1/4 system test, all components in hand” [53, p. 20]. 

.25 x Total effort = Estimate for integration testing 

As discussed by Wolff,  approximately six integration tests per day can be 

executed for a large application, such as an electronic commerce system [58, p. 16]. This 

does not include the amount of time required to create the test case.  

In the COCOMO II results that will be discussed in Step 8, the Integration and 

Test costs are part of the phase effort for Construction. In this phase breakdown the total 

Construction is 76% of the software development effort. Using the waterfall lifecycle 

definitions for COCOMO II the breakdown is: Product Design 17%; Programming 58%; 

Integration and Test 25% [55]. 

As is illustrated in Figure 44 for COA 1, the Construction phase is allocated 6.4 

months of schedule. Twenty-five percent of that time is 1.6 months, which 

corresponds to 32 days (assuming five days per week and eight hours per day for each 

staff person). Assuming that six test cases per day can be executed, then 192 test cases 

can be executed in the allocated time for test and integration.  

However, there are 864 event traces generated in the MP model for COA 1. Not 

including the time required to create the actual test cases, this would require over 144 

days to execute all testing. Upon inspection of the event traces, some are significantly 

less complicated than others, so test case generation and execution based on each event 

trace will not require the same amount of effort. But this does provide information for 

next steps to inform decision making, both technically and programmatically. The first 

step is to revisit the model, and ensure that the behaviors of the application are accurately 

captured. If the model is correct, then the next step is to determine is there any flexibility 

in the schedule and resources to support additional testing. Since 144 days is unrealistic, 

it becomes clear that only a subset of event traces can be selected for testing.  
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If schedule does not support 192 test cases, then the event traces will need to be 

inspected and a subset selected for use in the creation of test cases. Which ones to select 

is a topic for future work.  

(7) Step 7: Determine the Unadjusted Function Point (UFP) count  

COA 1: For this COA, limited source information was applied so average 

functional complexity and size values were used.  

By assuming an EI/EO/EQ average functional complexity and size values, 

derived from the IFPUG tables for transactional functions, the average value is (4+5+4)/3 

= 4.3 For the 20 transactional functions, represented by COORDINATEs, the resulting 

UFP count is 20 x 4.3 = 86 UFP.  

By assuming an ILF/EIF average functional complexity and size value, derived 

from the IFPUG tables for data functions, the average value is (10 +7)/2= 8.5. For the 

four data functions, represented by SHARE ALLs, the resulting UFP count is (4 x 8.5) = 

34 UFP.  

The total UFP count provided in the It’s Tee Time source data is 88 UFP. Using 

the ThreeMetrics methodology, the total UFP for COA 1 is 120 UFPs, which results in a 

delta of 32 UFPs.  

COA 2: By inspecting the model for key words associated with the behaviors of 

each COORDINATE composition operation, the values for average for EI (4), average 

for EO (5), and average for EQ (4) can be used to calculate the transactional function 

UFP total.  

 

(9 “inquire” COORDINATEs x 4 UFP/COORDINATE) + (2 “calculate or buy” 

COORDINATEs x 5 UFP/COORDINATE) + (9 “add, change, delete” COORDINATEs 

x 4 UFP/COORDINATE) = 36 + 36 + 10 = 82 UFP 
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Using ILF average functional size of 10, and the EIF average functional size of 7, 

(3 ILF SHARE Alls x 10) + (1 EIF SHARE Alls x 7) = 37.  

The number of UFPs calculated for COA 2 is 82 + 37 = 119 UFPs. 

The total UFP count provided in the It’s Tee Time source data is 88 UFP. The 

total UFP for COA 2, using the ThreeMetrics methodology and assuming an average 

functional complexity and size is 119 UFPs, a delta of 31 UFPs from the source 

information.  

COA 3: By inspecting the model for key words associated with the behaviors of 

each COORDINATE composition operation, and the number of ADDs (representing 

DETs) within each COORDINATE, the values for nine EIs, nine EQs, and two EOs, to 

calculate the transactional function UFP count. Tables 18, 19, and 20 illustrate the UFP 

count for transactional function types, extracted from the MP model for COA 3. Each 

COORDINATE is numbered and has a corresponding functional complexity and size, 

based on the number of ADDs (i.e., DETs) associated with each COORDINATE. 

Additionally, the MP schema can be mined for specific words, e.g. inquire, add, change, 

calculate, to specify what type of transactional function the COORDINATE is 

representing.  

Table 18 addresses the list of EQ COORDINATEs that were extracted from the 

MP schema for COA 3.  
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Table 18.   EQ COORDINATEs Extracted From MP Schema for COA 3 

 
 

Table 19 addresses the list of EI COORDINATEs that were extracted from the 

MP schema for COA 3.  

Table 19.   EI COORDINATEs Extracted From MP Schema for COA 3 
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Table 20 addresses the list of EO COORDINATEs that were extracted from the 

MP schema for COA 3.  

Table 20.   EO COORDINATEs Extracted From MP Schema for COA 3 

 
 

Adding the individually calculated UFP counts of the EQ, EI, and EO 

transactional functions result in 62 UFPs for the transactional functions. 

Assuming an average functional complexity and size for the data functions, and 

inspecting the model for ILFs and EIFs, the UFP for data functions is 

 

(3 ILF SHARE ALLs x 10 UFP/SHARE ALL) + (1 EIF SHARE ALL x 7 UFP/SHARE 

ALL) = 37 UFPs 

 

The total UFP for COA 3 is 62 UFP + 37 UFP = 99 UFP. The source information 

indicated that the UFP for the It’s Tee Time Example is 88 UFP, indicating that there is a 

delta of 11 UFP between the COA 3 count and the source information.  

COA 4: By inspecting the model for key words associated with the behaviors of 

each COORDINATE composition operation, and the number of ADDs (representing 

DETs) within each COORDINATE, the values of the EIs, EOs, and EQs are calculated to 

determine the total transactional function UFP count. Tables 20, 21, and 22 illustrate the 

UFP count for transactional function types, extracted from the MP model for COA 3, that 

is still applicable to COA 4. Each numbered nested COORDINATE has a corresponding 

functional complexity and size, based on the number of ADDs (i.e., DETs) associated 

with each COORDINATE. Additionally, the MP schema can be mined for specific 

words, e.g. inquire, add, change, calculate, to specify what type of transactional function 

the COORDINATE is representing.  
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As discussed earlier, for COA 4, the behaviors of each ROOT are captured by 

specific activities associated with each ROOT, based on the requirements, supporting 

information, and the ThreeMetrics box and arrow representation.  

COA 4 leverages the rich source information provided in the It’s Tee Time 

example to represent behaviors of the DETs in a nested COORDINATE for transactional 

functions. Each ADD within the nested COORDINATE of a transactional function 

represents a DET.  

Additionally, for COA 4, the interactions between the IAA and the ILFs and EIF 

are captured by representing the DETs in a nested COORDINATE for data functions. 

Each ADD within the nested COORDINATE of a data function represents a DET. Based 

on the source information provided, each ILF and EIF has one RET. 

Table 21 illustrates the UFP count for data functions, extracted from the MP 

model for COA 4. Each numbered nested COORDINATE has a corresponding functional 

complexity and size, based on the number of ADDs (i.e., Data Element Types) associated 

with each COORDINATE. Additionally, the MP Schema can be mined for specific 

words, e.g. ILF and EIF, to specify what type of file the COORDINATE is representing.  

Table 21.   Data Function UFP Using Nested COORDINATE 

 
 

(1 ILF x 7UFP/ILF) + (1 ILF x 7UFP/ILF) + (1 ILF x 7UFP/ILF) + (1 EIF x 5 UFP/EIF) 

= 26 UFPs 
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Recall that adding the individually calculated UFP counts of the EQ, EI, and EO 

transactional functions result in 62 UFPs for the transactional functions. The UFP counts 

from Tables 21, 22 and 23, when added to Table 24 result in  

 

62 UFPs + 26 UFP = 88 UFP 

 

The total UFP for COA 4 is 88 UFPs. The source information indicated that the 

UFP count for the It’s Tee Time Example is 88 UFPs, the same as COA 4. 

(8) Step 8: Calculate effort estimate 

The calculation for COA 1 is included in this example. Using the total UFP count 

of 120 UFPs for COA 1 and directly inputting into [57], for a JAVA implementation 

language, Maintenance Off and a Cost per Person-Month of $20,000, results in the 

nominal estimates synopsized in Table 22 and supported by Figures 43 and 44. 

Table 22.   Nominal Effort Estimates for COA 1 
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Figure 43 illustrates the options available in the COCOMO II model. For this 

analysis, nominal inputs were selected with 120 UFPs manually inserted into the model.  

 

Figure 43.  Nominal Effort Options Selected for COA 1, Maintenance Off 
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Figure 44 illustrates the results of the COCOMO II model for 120 UFPs manually 

inserted into the model.  

 

Figure 44.  Nominal Effort Options for COA 1, Maintenance Off, Results 
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The same methodology used to calculate the effort estimate for COA 1 is 

applicable to COAs 2–4. The COCOMO II outputs for COAs 1–4, are illustrated in 

Table 23.  

Table 23.   COCOMO II Output 

 
 

(9) Step 9: Finalize analysis and provide results to stakeholders 

As discussed earlier, each stakeholder is interested in a slightly different view of 

the same set of information. However, these views must be consistent with each other, 

accurately representing a subset of the whole set of information.  

Each step of the ThreeMetrics methodology provides meaningful information to 

stakeholders. Programmers and engineers will appreciate the high-level pseudo code of 

the MP model in Appendix C, since it describes the behaviors of the Tee Time 

application and its internal and external interactions. System and software engineers will 

appreciate the box and arrow format of the information in Figure 39. Cost analysts and 

program managers will appreciate the results of the COCOMO II model in Figure 44, as 

input to resourcing requirements presented with each instance of the architecture model. 

Testers will appreciate the use cases (event traces) in Figures 40–42, and the sequence 

diagrams view that inform integration test case creation.  

 
 
 
 
 
 
 
 

Total UFP 
Count

Effort
(Person-months)

Schedule
(Months) 

Cost
(Dollars)

SLOC

120 22.5 10.3 449,716 6360

119 22.3 10.2 445,597 6307

99 9.6 9.6 363,968 5247

88 9.2 9.2 319,750 4664
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V. SUMMARY OF RESULTS AND FINDINGS 

The initial goal of this research was to answer the question “Can unadjusted 

function point counts be extracted from executable architectural behavioral models, for 

use in cost estimation models such as COCOMO II, in order to inform effort estimates 

early in the life cycle?” 

ThreeMetrics methodology, and its application to the examples in Chapter IV, 

confirm the following contributions of this work: 

• The ThreeMetrics methodology does relate function point counting, 
COCOMO II cost estimates, and executable behavioral modeling of system 
and software architecture specifications. 

• The ThreeMetrics methodology, based on MP architecture model, provides a 
way of establishing internal and external boundaries for function point 
counting. 

• The use of the MP language and framework significantly simplified otherwise 
complex relationships. The ability to execute the model using MP Analyzer on 
Firebird, inspect it, and debug it, provided confidence in the results of the 
model.  

• The ThreeMetrics methodology successfully unifies the two distinct function 
point counting concepts of data function types and transactional function 
types. 

 

A. RESULTS AND FINDINGS 

This research introduced a newly developed methodology called the 

ThreeMetrics, whose name represents the three metrics resulting from the methodology: 

UFP counts, use cases to inform integration test estimates, and views of the architecture.  

The ThreeMetrics methodology employed architecture modeling of the behaviors 

of a software-intensive system, the behaviors of the environment, and the behaviors of 

the system interacting with the environment, in order to inform technical and investment 

decisions. This research accomplished the following: 



 136 

• As described in Chapter III, this research presented a nine-step methodology 
to extract an UFP count from MP’s executable architecture models for use in 
software cost estimation.  

• As demonstrated in three examples in Chapter IV, the ThreeMetrics 
methodology leveraged precise behavioral modeling using MP and the MP 
Analyzer on Firebird to assess architecture design decisions and their impacts. 

• As demonstrated in three examples in Chapter IV, the ThreeMetrics 
methodology related architecture modeling to resourcing through analysis of 
behaviors and UFP counts, leveraging complexity and size metrics such as 
DETs. The COCOMO II model extension was used to manually input the 
UFP count (extracted from the MP model) into the COCOMO II model, to 
determine cost estimates.  

• As demonstrated in three examples in Chapter IV, the ThreeMetrics 
methodology used event traces (i.e. use cases) to inform integration testing 
estimates and decision making, based on estimates extracted from the 
Construction phase of the COCOMO II model. 

• As demonstrated in three examples in Chapter IV, the ThreeMetrics 
methodology leveraged aspects of the FP counting methodology to write the 
MP model with key words to distinguish between EI, EO, and EQ 
transactional function types improved the accuracy of the UFP count. 

• As demonstrated in the four COAs of example three in Chapter IV, accurately 
representing the data function interactions contributed to an accurate total 
UFP count.  

• As demonstrated in three examples in Chapter IV, each step in the 
ThreeMetrics methodology contributed to information, consistently 
represented in multiple views and formats, that can be used communicate with 
multiple stakeholders. 

 

The UFP results of the three examples explored in Chapter IV are summarized in 

Table 24. The UFPs extracted from the model approached the UFP count from the source 

info answer key, as more details associated with the ILF and EIF were used. Representing 

the behaviors of the data function types was accomplished using the IAA and capturing 

the interactions between the data functions and the IAA in the MP model.  
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Table 24.   UFP Summation for Examples in Chapter IV 

 
 

B. CONCLUSIONS 

The ThreeMetrics methodology does relate architecture modeling to resourcing 

through UFP counts, and has demonstrated that an UFP count can be extracted from an 

MP executable architecture model, for use in software cost estimation.  

The ThreeMetrics methodology leverages precise behavioral modeling using MP 

and the MP Analyzer on Firebird to assess architecture design decisions and their 

impacts. UFP counts can be manually inserted into the COCOMO II tool determine cost 

estimates.  

The ThreeMetrics methodology uses event traces and schedule information from 

the COCOMO II model, to inform integration test estimates and decision making.  

Each step of the ThreeMetrics methodology provides meaningful information to 

stakeholders in the form of precise models, pseudo code, box and arrow diagrams, event 

traces and cost estimates.  
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C. FUTURE WORK 

This research sets the conditions for interesting future work, building upon the 

foundation of the ThreeMetrics methodology. Several topics are included below. 

Although event traces were used to inform estimates for integration test cases, the 

process and the criteria for the selection of a subset of relevant event traces to inform 

integration test cases has not yet been done. Resourcing and schedule constraints may 

limit the number of test cases that can be created from the set of MP event traces.  

Currently, the UFP count extracted from the MP model is manually entered into 

the COCOMO II model. A current prototype has demonstrated that a .mp file can 

uploaded and parsed to extract the UFP count from the MP model. A future 

implementation is required to automate the process to extract an UFP from a .mp file, 

using the rules identified in the ThreeMetrics methodology. 

The ThreeMetrics methodology must continue to be evaluated in the broader 

context of the COCOMO II model. How MP metrics relate to the evaluation of actual 

projects must be explored to demonstrate actual value, improve the mechanics of the 

evaluation process, and establish new perspectives on COCOMO II and MP.  

An MP model is a rich source of information, but not all the information in an MP 

model, particularly the event grammar (i.e., pseudo code) has been utilized in this 

research. Cost estimates derived from early architecture models need to take advantage of 

all information available in the MP model. Besides using FPA, there are other complexity 

and size metrics that can be employed. For example, consider that  

 

Cost = K1*FP_metrics + K2*Complexity_metrics + K3*Size_estimate  

 

FP counts are calculated mostly following the established FP methodology, 

identifying the MP interactions and assigning functional complexity and size values. 

Complexity metrics can also address alternatives and iterations in the MP model that 

clearly indicate that an effort will be needed to implement them. Size estimates should 

then consider the total number of events, composite events, roots, alternatives, iterations, 
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concurrent events. Additional consideration must be given to how to properly balance 

these metrics, such as determining what other information from the MP model may be of 

use (such as reuse metrics), and considering how K1, K2, K3 coefficients should be 

obtained, perhaps based on heuristics.  

The IFPUG is continuing to evolve the Software Non-functional Assessment 

Process (SNAP) counting practice which “measures software by quantifying the size of 

non-functional requirements” [70]. An MP model can be refined to include greater levels 

of detail about the application, if that detail is available. This includes further 

decomposition of functional requirements and then linking them to technical (or non-

functional) requirements. Since SNAP focuses on the non-functional requirements, the 

role of MP, the ThreeMetrics methodology, and SNAP is another topic for future work.  
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APPENDIX A.  MP SCHEMA FOR SPELL CHECKER  

/*  Name: MP SCHEMA Spellchecker  
Purpose: Spelling Checker example for UFP estimate, derived from N. Fenton, J. Bieman, 
Software Metrics, 3rd Edition, CRC, 2015, pp.252-254 [69]. 
Authors: This example was refined and improvised by M. Auguston on 02/08/16 and  Monica 
Farah-Stapleton on 02/16/16  

 Tool Used: MP Analyzed on Firebird 
 Scope: 1   */ 
 
 
SCHEMA Spellchecker 
 
ROOT User: (*  provide_document_file_name 
    [ provide_personal_dictionary ] 
   [inquire_on_number_of_processed_words]     
   [ check_number_of_processed_words ] 
    [inquire_on_number_of_errors_so_far] 
   [ check_number_of_errors_so_far ] 
   read_spelling_report 
    update_document_file  
   read_errors_message 
    [ update_personal_dictionary ] 
   [receive_misspld_wrd_rpt] 
   *) 
    no_more_errors 
   end_of_work; 
 
 
 
ROOT Spell_chk : (*  read_document_file 
    Process_document  
   [send_number_of_processed_words] 
   [ report_number_of_processed_words ] 
   [send_number_of_errors] 
   [ report_number_of_errors ] 
    provide_spelling_report 
    [report_misspld_wrd] 
   *) ; 
 
  Process_document:  read_dictionary  
      [ read_personal_dictionary ] 
      [ spelling_errors_detected ] 
      ; 
 
/* EI: Doc_filename */ 
 
COORDINATE   $pdoc: provide_document_file_name FROM User, 
   $rdoc: read_document_file   FROM Spell_chk 
 DO  ADD $pdoc PRECEDES $rdoc; OD; 
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/* EI: Pers_diction_file */ 
 
COORDINATE   $p1: provide_personal_dictionary FROM User, 
   $r1: read_personal_dictionary  FROM Spell_chk 
 DO   ADD $p1 PRECEDES $r1; OD; 
 
 
/* EQ: Inquire_errors_so_far */ 
 
COORDINATE  $cnerr: inquire_on_number_of_errors_so_far FROM User, 
  $rnerr: send_number_of_errors     FROM Spell_chk 
 DO  ADD $rnerr PRECEDES $cnerr;  OD; 
 
 
/* EO: No_ers_so_far_msg */ 
 
COORDINATE  $cnerr1: check_number_of_errors_so_far FROM User, 
  $rnerr1: report_number_of_errors  FROM Spell_chk 
 DO  ADD $rnerr1 PRECEDES $cnerr1;  
 OD; 
 
 
/* EQ: Inquire_words_processed*/ 
 
COORDINATE  $cwn: inquire_on_number_of_processed_words  FROM User, 
  $rwn: send_number_of_processed_words  FROM Spell_chk 
  DO  ADD $rwn PRECEDES $cwn;  
 OD; 
 
 
/* EO: No_wrds_prosd_msg */ 
 
COORDINATE  $cwn1: check_number_of_processed_words  FROM User, 
  $rwn1: report_number_of_processed_words FROM Spell_chk 
  DO  ADD $rwn1 PRECEDES $cwn1;  
 OD; 
 
 
 
/* EO: Misspld_wrd_rpt */ 
 
COORDINATE  $cwn2: receive_misspld_wrd_rpt  FROM User, 
  $rwn2: report_misspld_wrd  FROM Spell_chk 
  DO  ADD $cwn2 PRECEDES $rwn2;  
 OD; 
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ROOT Dictionary: (* read_dictionary *); 
 
 
ROOT Document_file:   (*  (* read_document_file *)  
      (* update_document_file *)  
     (* send_document_file *) 
     *); 
 
ROOT Personal_Dictionary:  (*  (* update_personal_dictionary  *) 
      (* read_personal_dictionary  *) 
     *); 
 
Spell_chk, Dictionary     SHARE ALL read_dictionary; 
 
Spell_chk, Personal_Dictionary    SHARE ALL read_personal_dictionary ; 
 
Spell_chk, Document_file    SHARE ALL update_document_file; 
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APPENDIX B.  MP SCHEMA FOR COURSE MARKS  

/*  Name: MP SCHEMA Course Marks  
 Purpose: The Course Marks System example for UFP estimate is derived from  N.Fenton, 
 J.Bieman, Software Metrics, 3rd Edition, CRC, 2015, pp. 367-368 and 546-548 [69]. This example 
 was refined and improvised by Monica Farah-Stapleton 03/02/16, and MP Schema updated by 
 Prof Mikhail Auguston, 03/02/16.  
 Tool Used: MP Analyzed on Firebird 
 Scope: 3   */ 

 

 

 

SCHEMA Course Marks 

ROOT User: (* select_course_choice 

    select_operation_choice     

    (enter_coursework_marks | modify_coursework_marks) 

   (enter_exam_marks | modify_exam_marks) 

   inquire_on_average_grade 

   inquire_on_letter_grade 

   receive_student_marks_report 

  *) 

    end_of_activity; 

 

 

ROOT Grade_collector: (* return_course_selection 

     return_operation_selection 

    receive_coursework_marks_input 

    receive_exam_marks_input 

    calculate_average_grade 
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    write_average_grade 

    send_average_grade 

    equate_average_grade_to_letter 

    send_letter_grade 

    create_student_marks_report 

    send_student_marks_report 

     

   *) ; 

     

 

 

/* EI: Menu_selct_course_choice */ 

COORDINATE  $pdoc: select_course_choice    FROM User, 

   $rdoc: return_course_selection   FROM Grade_collector 

 DO  ADD $pdoc PRECEDES $rdoc; OD; 

 

 

 

/* EI: Menu_selct_operation_choice */ 

COORDINATE  $p1: select_operation_choice    FROM User, 

   $r1: return_operation_selection   FROM Grade_collector 

 DO   ADD $p1 PRECEDES $r1; OD; 

 

 

 

/* EI: Coursework_marks */ 
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COORDINATE   $p1: enter_coursework_marks  FROM User, 

   $r1: receive_coursework_marks_input  FROM Grade_collector 

 DO   ADD $p1 PRECEDES $r1; OD; 

 

 

 

/* EI: Exam_marks */ 

COORDINATE  $p1: enter_exam_marks    FROM User, 

   $r1: receive_exam_marks_input   FROM Grade_collector 

 DO   ADD $p1 PRECEDES $r1; OD; 

 

 

/* EQ: Average */ 

COORDINATE  $p1: inquire_on_average_grade   FROM User, 

   $r1: send_average_grade   FROM Grade_collector 

 DO   ADD $p1 PRECEDES $r1; OD; 

 

 

/* EQ: Letter_grade */ 

COORDINATE  $p1: inquire_on_letter_grade   FROM User, 

   $r1: send_letter_grade   FROM Grade_collector 

 DO   ADD $p1 PRECEDES $r1; OD; 

 

 

 

/* EO: List_of_student_marks */ 
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COORDINATE  $cnerr: receive_student_marks_report  FROM User, 

   $rnerr: send_student_marks_report  FROM Grade_collector 

 DO   ADD $cnerr PRECEDES $rnerr;   

 OD; 

 

 

 

ROOT Coursefile:  (*  receive_coursework_marks_input   

      receive_exam_marks_input    

      update_student_exam_mark    

     update_coursework_mark     

     write_average_grade   

    *); 

 

 

 

Grade_collector, Coursefile SHARE ALL  receive_exam_marks_input,  

      write_average_grade,  

      receive_coursework_marks_input; 
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APPENDIX C.  MP SCHEMA FOR IT’S TEE TIME COAS 1–4 

A. MP SCHEMA FOR COURSE OF ACTION 1 

 
/*  Name: MP SCHEMA TeeTime_COA1_COA2. 

Purpose: The It’s Tee Time example for UFP estimate is derived from the It’s Tee Time counting 
example, courtesy of Q/P Management Group. TeeTime source information is protected by 
copyright [56]. This example was refined and improvised by Monica Farah-Stapleton 06/20/16, 
and updated by Prof Mikhail Auguston, 06/22/16.  

 Tool Used: MP Analyzed on Firebird 
 Scope: 1       */ 
 
 
 
SCHEMA TeeTime_COA1_COA2 
 
 
/* ROOT User: Behaviors executed by the User of the It’s Tee Time application */ 
 
ROOT User: (* ( (inquire_on_state_data 
     inquire_on_city_data 
     inquire_on_golfcourse_list 
     (* (inquire_on_golfcourse_detail | go_back )*) 
     inquire_on_reservation_display 
     (input_add_reservation_data | 
 input_change_reservation_data |  
 input_delete_reservation_data)  
     inquire_on_maintain_golfcourses 
     (input_add_maintain_golfcourses_data | 
  input_change_maintain_golfcourses_data |  
 input_delete_maintain_golfcourses_data) ) 
    inquire_on_scoreboard_display 
     (input_add_scoreboard_data | 
 input_change_scoreboard_data |  
 input_delete_scoreboard_data)  
    inquire_on_shopping_display 
    (* (inquire_on_product_display 
 calculate_total_amount 
 buy_product )*) 
             
         | exit)  
     *); 
 
/* ROOT TT_GC_ILF: The combined, relevant behaviors of the IAA and Golfcourses ILF */ 
 
ROOT TT_GC_ILF: (* (get_state_result 
     get_city_result 
     get_golfcourse_list_result 
     get_golfcourse_detail_result 
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     get_maintain_golfcourses_result 
     (*(add_maintain_golfcourses_data | 
   change_maintain_golfcourses_data |  
   delete_maintain_golfcourses_data)*) )  
             
  
    *); 
 
 
 
/* ROOT TT_Teetimes_ILF: The combined, relevant behaviors of the IAA and Teetimes ILF */ 
 
ROOT TT_Teetimes_ILF: ( get_reservation_display_result 
      (*(add_reservation_data  
       | change_reservation_data 
        | delete_reservation_data)*) 
     );  
 
/* ROOT TT_Scoreboard_ILF: The combined, relevant behaviors of the IAA and Scoreboard ILF */ 
 
ROOT TT_Scoreboard_ILF: ( get_scoreboard_display_result 
        (*(add_scoreboard_data  
       | change_scoreboard_data 
        | delete_scoreboard_data)*) 
     );  
 
/* ROOT TT_Merchandise_EIF: The combined, relevant behaviors of the IAA and Merchandise EIF */ 
 
ROOT TT_Merchandise_EIF: ( get_shopping_display_result  
        (*(get_product_display_result     
     get_calculated_total_amount  
      send_calculated_amount_to_purchasing)*) 
     );  
 
 
/* ROOT TT: The relevant behaviors of the IAA */ 
 
ROOT TT: (* (writing | reading) *); 
 
 
/* ROOT GC_ILF: The relevant behaviors of the Golfcourses ILF */ 
 
ROOT GC_ILF: (+writing +) (*sending*); 
 
 
/* ROOT Teetimes_ILF: The relevant behaviors of the Teetimes ILF */ 
  
ROOT Teetimes_ILF: (+writing +) (*sending*); 
 
 
/* ROOT Scoreboard_ILF: The relevant behaviors of the Teetimes ILF */ 
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ROOT Scoreboard_ILF: (+writing +) (*sending*); 
 
 
/* ROOT Merchandise_ILF: The relevant behaviors of the Merchandise EIF */ 
 
ROOT Merchandise_EIF: (+writing +) (*sending*); 
 
 
 
/* COORDINATE 1: Interaction between the User behaviors and TT/Golfcourses ILF behaviors */ 
 
COORDINATE $a:inquire_on_state_data     FROM User, 
    $b:get_state_result   FROM TT_GC_ILF 
    
DO ADD $a PRECEDES $b;OD; 
 
 
/* COORDINATE 2: Interaction between the User behaviors and TT/Golfcourses ILF behaviors */ 
 
COORDINATE $c:inquire_on_city_data   FROM User, 
   $d:get_city_result    FROM TT_GC_ILF 
 
DO ADD $c PRECEDES $d;OD; 
 
/* COORDINATE 3: Interaction between the User behaviors and TT/Golfcourses ILF behaviors */ 
 
 
COORDINATE $e:inquire_on_golfcourse_list   FROM User, 
   $f:get_golfcourse_list_result   FROM TT_GC_ILF 
 
 DO ADD $e PRECEDES $f;OD; 
 
/* COORDINATE 4: Interaction between the User behaviors and TT/Golfcourses ILF behaviors */ 
 
COORDINATE  $g:inquire_on_golfcourse_detail   FROM User, 
   $h:get_golfcourse_detail_result   FROM TT_GC_ILF 
    
 DO ADD $g PRECEDES $h;OD; 
 
 
/* COORDINATE 5: Interaction between the User behaviors and TT/Teetimes ILF behaviors */ 
 
COORDINATE  $i:inquire_on_reservation_display  FROM User, 
  $j:get_reservation_display_result   FROM TT_Teetimes_ILF 
    
 DO ADD $i PRECEDES $j;OD; 
 
 
/* COORDINATE 6: Interaction between the User behaviors and TT/Teetimes ILF behaviors */ 
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COORDINATE  $k:input_add_reservation_data   FROM User, 
   $l:add_reservation_data    FROM TT_Teetimes_ILF 
 
 DO ADD $k PRECEDES $l; OD; 
 
 
 
/* COORDINATE 7: Interaction between the User behaviors and TT/Teetimes ILF behaviors */ 
 
COORDINATE $m:input_change_reservation_data   FROM User, 
   $n:change_reservation_data   FROM TT_Teetimes_ILF 
 
 DO ADD $m PRECEDES $n; OD; 
 
 
/* COORDINATE 8: Interaction between the User behaviors and TT/Teetimes ILF behaviors */ 
 
COORDINATE  $o:input_delete_reservation_data   FROM User, 
   $p:delete_reservation_data   FROM TT_Teetimes_ILF 
 
 DO ADD $o PRECEDES $p; OD; 
 
/* COORDINATE 9: Interaction between the User behaviors and TT/Golfcourses ILF behaviors */ 
 
COORDINATE  $q:inquire_on_maintain_golfcourses  FROM User, 
  $r:get_maintain_golfcourses_result   FROM TT_GC_ILF 
    
DO ADD $q PRECEDES $r;OD; 
 
 
/* COORDINATE 10: Interaction between the User behaviors and TT/Golfcourses ILF behaviors*/ 
 
COORDINATE  $s:input_add_maintain_golfcourses_data   FROM User, 
   $t:add_maintain_golfcourses_data   FROM TT_GC_ILF 
 
 DO ADD $s PRECEDES $t; OD; 
 
/* COORDINATE 11: Interaction between the User behaviors and TT/Golfcourses ILF behaviors*/ 
 
COORDINATE  $u:input_change_maintain_golfcourses_data  FROM User, 
   $v:change_maintain_golfcourses_data   FROM TT_GC_ILF 
 
 DO ADD $u PRECEDES $v; OD; 
 
 
/* COORDINATE 12: Interaction between the User behaviors and TT/Golfcourses ILF behaviors*/ 
 
COORDINATE  $w:input_delete_maintain_golfcourses_data   FROM User, 
   $x:delete_maintain_golfcourses_data    FROM TT_GC_ILF 
 
 DO ADD $w PRECEDES $x; OD; 
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/* COORDINATE 13: Interaction between the User behaviors and TT/Scoreboard ILF behaviors */ 
 
 
COORDINATE $y:inquire_on_scoreboard_display  FROM User, 
  $z:get_scoreboard_display_result   FROM TT_Scoreboard_ILF 
    
 DO ADD $y PRECEDES $z; OD; 
 
 
 
 
/* COORDINATE 14: Interaction between the User behaviors and TT/Scoreboard ILF behaviors */ 
 
COORDINATE  $aa:input_add_scoreboard_data   FROM User, 
   $bb:add_scoreboard_data   FROM TT_Scoreboard_ILF 
 
 DO ADD $aa PRECEDES $bb; OD; 
 
 
 
/* COORDINATE 15: Interaction between the User behaviors and TT/Scoreboard ILF behaviors */ 
 
COORDINATE  $cc:input_change_scoreboard_data  FROM User, 
   $dd:change_scoreboard_data   FROM TT_Scoreboard_ILF 
 
 DO ADD $cc PRECEDES $dd; OD; 
 
 
/* COORDINATE 16: Interaction between the User behaviors and TT/Scoreboard ILF behaviors */ 
 
COORDINATE  $ee:input_delete_scoreboard_data  FROM User, 
   $ff:delete_scoreboard_data   FROM TT_Scoreboard_ILF 
 
 DO ADD $ee PRECEDES $ff; OD; 
 
 
 
/* COORDINATE 17: Interaction between the User behaviors and TT/Merchandise ILF behaviors */ 
 
COORDINATE  $gg:inquire_on_shopping_display   FROM User, 
   $hh:get_shopping_display_result   FROM TT_Merchandise_EIF 
    
 DO ADD $gg PRECEDES $hh;OD; 
 
 
 
/* COORDINATE 18: Interaction between the User behaviors and TT/Merchandise ILF behaviors */ 
 
COORDINATE $ii:inquire_on_product_display   FROM User, 
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   $jj:get_product_display_result   FROM TT_Merchandise_EIF 
    
 DO ADD $ii PRECEDES $jj;OD; 
 
 
/* COORDINATE 19: Interaction between the User behaviors and TT/Merchandise ILF behaviors */ 
 
COORDINATE $kk:calculate_total_amount    FROM User, 
  $ll:get_calculated_total_amount    FROM TT_Merchandise_EIF 
    
DO ADD $kk PRECEDES $ll;OD; 
 
 
/* COORDINATE 20: Interaction between the User behaviors and TT/Merchandise ILF behaviors */ 
 
 
COORDINATE $mm:buy_product     FROM User, 
 $nn:send_calculated_amount_to_purchasing  FROM TT_Merchandise_EIF 
DO ADD $mm PRECEDES $nn;OD; 
 
 
/* SHARE All 1: Interaction between the IAA behaviors and the Golfcourse ILF behaviors */ 
 
TT, GC_ILF SHARE ALL writing; 
 
 
/* SHARE All 2: Interaction between the IAA behaviors and the Teetimes ILF behaviors */ 
 
TT, Teetimes_ILF SHARE ALL writing; 
 
 
/* SHARE All 3: Interaction between the IAA behaviors and the Scoreboard behaviors */ 
 
TT, Scoreboard_ILF SHARE ALL writing; 
 
 
/* SHARE All 4: Interaction between the IAA behaviors and the Merchandise EIF behaviors */ 
 
TT, Merchandise_EIF SHARE ALL writing; 
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B. MP SCHEMA FOR COURSE OF ACTION 2 

 
/*  Name: MP SCHEMA TeeTime_COA1_COA2 .  

Purpose: The It’s Tee Time example for UFP estimate is derived from the It’s Tee Time counting 
example, courtesy of Q/P Management Group. TeeTime source information is protected by 
copyright [56]. This example was refined and improvised by Monica Farah-Stapleton 06/20/16, 
and updated by Prof Mikhail Auguston, 06/22/16.  

 Tool Used: MP Analyzed on Firebird 
 Scope: 1       */ 

 
 
SCHEMA TeeTime_COA1_COA2 
 
 
/* ROOT User: Behaviors executed by the User of the It’s Tee Time application */ 
 
ROOT User: (* ( (inquire_on_state_data 
     inquire_on_city_data 
     inquire_on_golfcourse_list 
     (* (inquire_on_golfcourse_detail | go_back )*) 
     inquire_on_reservation_display 
     (input_add_reservation_data | 
 input_change_reservation_data |  
 input_delete_reservation_data)  
     inquire_on_maintain_golfcourses 
     (input_add_maintain_golfcourses_data | 
  input_change_maintain_golfcourses_data |  
 input_delete_maintain_golfcourses_data) ) 
    inquire_on_scoreboard_display 
     (input_add_scoreboard_data | 
 input_change_scoreboard_data |  
 input_delete_scoreboard_data)  
    inquire_on_shopping_display 
    (* (inquire_on_product_display 
 calculate_total_amount 
 buy_product )*) 
             
         | exit)  
     *); 
 
/* ROOT TT_GC_ILF: The combined, relevant behaviors of the IAA and Golfcourses ILF */ 
 
ROOT TT_GC_ILF: (* (get_state_result 
     get_city_result 
     get_golfcourse_list_result 
     get_golfcourse_detail_result 
     get_maintain_golfcourses_result 
     (*(add_maintain_golfcourses_data | 
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   change_maintain_golfcourses_data |  
   delete_maintain_golfcourses_data)*) )  
             
  
    *); 
 
 
 
/* ROOT TT_Teetimes_ILF: The combined, relevant behaviors of the IAA and Teetimes ILF */ 
 
ROOT TT_Teetimes_ILF: ( get_reservation_display_result 
      (*(add_reservation_data  
       | change_reservation_data 
        | delete_reservation_data)*) 
     );  
 
/* ROOT TT_Scoreboard_ILF: The combined, relevant behaviors of the IAA and Scoreboard ILF */ 
 
ROOT TT_Scoreboard_ILF: ( get_scoreboard_display_result 
        (*(add_scoreboard_data  
       | change_scoreboard_data 
        | delete_scoreboard_data)*) 
     );  
 
/* ROOT TT_Merchandise_EIF: The combined, relevant behaviors of the IAA and Merchandise EIF */ 
 
ROOT TT_Merchandise_EIF: ( get_shopping_display_result  
        (*(get_product_display_result     
     get_calculated_total_amount  
      send_calculated_amount_to_purchasing)*) 
     );  
 
 
/* ROOT TT: The relevant behaviors of the IAA */ 
 
ROOT TT: (* (writing | reading) *); 
 
 
/* ROOT GC_ILF: The relevant behaviors of the Golfcourses ILF */ 
 
ROOT GC_ILF: (+writing +) (*sending*); 
 
 
/* ROOT Teetimes_ILF: The relevant behaviors of the Teetimes ILF */ 
  
ROOT Teetimes_ILF: (+writing +) (*sending*); 
 
 
/* ROOT Scoreboard_ILF: The relevant behaviors of the Teetimes ILF */ 
 
ROOT Scoreboard_ILF: (+writing +) (*sending*); 
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/* ROOT Merchandise_ILF: The relevant behaviors of the Merchandise EIF */ 
 
ROOT Merchandise_EIF: (+writing +) (*sending*); 
 
 
 
/* COORDINATE 1: Interaction between the User behaviors and TT/Golfcourses ILF behaviors */ 
 
COORDINATE $a:inquire_on_state_data     FROM User, 
    $b:get_state_result   FROM TT_GC_ILF 
    
DO ADD $a PRECEDES $b;OD; 
 
 
/* COORDINATE 2: Interaction between the User behaviors and TT/Golfcourses ILF behaviors */ 
 
COORDINATE $c:inquire_on_city_data   FROM User, 
   $d:get_city_result    FROM TT_GC_ILF 
 
DO ADD $c PRECEDES $d;OD; 
 
/* COORDINATE 3: Interaction between the User behaviors and TT/Golfcourses ILF behaviors */ 
 
 
COORDINATE $e:inquire_on_golfcourse_list   FROM User, 
   $f:get_golfcourse_list_result   FROM TT_GC_ILF 
 
 DO ADD $e PRECEDES $f;OD; 
 
/* COORDINATE 4: Interaction between the User behaviors and TT/Golfcourses ILF behaviors */ 
 
COORDINATE  $g:inquire_on_golfcourse_detail   FROM User, 
   $h:get_golfcourse_detail_result   FROM TT_GC_ILF 
    
 DO ADD $g PRECEDES $h;OD; 
 
 
/* COORDINATE 5: Interaction between the User behaviors and TT/Teetimes ILF behaviors */ 
 
COORDINATE  $i:inquire_on_reservation_display  FROM User, 
  $j:get_reservation_display_result   FROM TT_Teetimes_ILF 
    
 DO ADD $i PRECEDES $j;OD; 
 
 
/* COORDINATE 6: Interaction between the User behaviors and TT/Teetimes ILF behaviors */ 
 
COORDINATE  $k:input_add_reservation_data  FROM User, 
   $l:add_reservation_data    FROM TT_Teetimes_ILF 
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 DO ADD $k PRECEDES $l; OD; 
 
 
 
/* COORDINATE 7: Interaction between the User behaviors and TT/Teetimes ILF behaviors */ 
 
COORDINATE $m:input_change_reservation_data   FROM User, 
   $n:change_reservation_data   FROM TT_Teetimes_ILF 
 
 DO ADD $m PRECEDES $n; OD; 
 
 
/* COORDINATE 8: Interaction between the User behaviors and TT/Teetimes ILF behaviors */ 
 
COORDINATE  $o:input_delete_reservation_data   FROM User, 
   $p:delete_reservation_data   FROM TT_Teetimes_ILF 
 
 DO ADD $o PRECEDES $p; OD; 
 
/* COORDINATE 9: Interaction between the User behaviors and TT/Golfcourses ILF behaviors */ 
 
COORDINATE  $q:inquire_on_maintain_golfcourses FROM User, 
  $r:get_maintain_golfcourses_result  FROM TT_GC_ILF 
    
DO ADD $q PRECEDES $r;OD; 
 
 
/* COORDINATE 10: Interaction between the User behaviors and TT/Golfcourses ILF behaviors*/ 
 
COORDINATE  $s:input_add_maintain_golfcourses_data   FROM User, 
   $t:add_maintain_golfcourses_data   FROM TT_GC_ILF 
 
 DO ADD $s PRECEDES $t; OD; 
 
/* COORDINATE 11: Interaction between the User behaviors and TT/Golfcourses ILF behaviors*/ 
 
COORDINATE  $u:input_change_maintain_golfcourses_data  FROM User, 
   $v:change_maintain_golfcourses_data   FROM TT_GC_ILF 
 
 DO ADD $u PRECEDES $v; OD; 
 
 
/* COORDINATE 12: Interaction between the User behaviors and TT/Golfcourses ILF behaviors*/ 
 
COORDINATE  $w:input_delete_maintain_golfcourses_data  FROM User, 
   $x:delete_maintain_golfcourses_data   FROM TT_GC_ILF 
 
 DO ADD $w PRECEDES $x; OD; 
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/* COORDINATE 13: Interaction between the User behaviors and TT/Scoreboard ILF behaviors */ 
 
 
COORDINATE $y:inquire_on_scoreboard_display   FROM User, 
  $z:get_scoreboard_display_result    FROM TT_Scoreboard_ILF 
    
 DO ADD $y PRECEDES $z; OD; 
 
 
/* COORDINATE 14: Interaction between the User behaviors and TT/Scoreboard ILF behaviors */ 
 
COORDINATE  $aa:input_add_scoreboard_data    FROM User, 
   $bb:add_scoreboard_data    FROM TT_Scoreboard_ILF 
 
 DO ADD $aa PRECEDES $bb; OD; 
 
 
 
/* COORDINATE 15: Interaction between the User behaviors and TT/Scoreboard ILF behaviors */ 
 
COORDINATE  $cc:input_change_scoreboard_data   FROM User, 
   $dd:change_scoreboard_data    FROM TT_Scoreboard_ILF 
 
 DO ADD $cc PRECEDES $dd; OD; 
 
 
/* COORDINATE 16: Interaction between the User behaviors and TT/Scoreboard ILF behaviors */ 
 
COORDINATE  $ee:input_delete_scoreboard_data   FROM User, 
   $ff:delete_scoreboard_data    FROM TT_Scoreboard_ILF 
 
 DO ADD $ee PRECEDES $ff; OD; 
 
 
 
/* COORDINATE 17: Interaction between the User behaviors and TT/Merchandise ILF behaviors */ 
 
COORDINATE  $gg:inquire_on_shopping_display   FROM User, 
   $hh:get_shopping_display_result   FROM TT_Merchandise_EIF 
    
 DO ADD $gg PRECEDES $hh;OD; 
 
 
 
/* COORDINATE 18: Interaction between the User behaviors and TT/Merchandise ILF behaviors */ 
 
COORDINATE $ii:inquire_on_product_display   FROM User, 
   $jj:get_product_display_result   FROM TT_Merchandise_EIF 
    
 DO ADD $ii PRECEDES $jj;OD; 
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/* COORDINATE 19: Interaction between the User behaviors and TT/Merchandise ILF behaviors */ 
 
COORDINATE $kk:calculate_total_amount    FROM User, 
  $ll:get_calculated_total_amount    FROM TT_Merchandise_EIF 
    
DO ADD $kk PRECEDES $ll;OD; 
 
 
/* COORDINATE 20: Interaction between the User behaviors and TT/Merchandise ILF behaviors */ 
 
 
COORDINATE $mm:buy_product     FROM User, 
 $nn:send_calculated_amount_to_purchasing  FROM TT_Merchandise_EIF 
DO ADD $mm PRECEDES $nn;OD; 
 
 
/* SHARE All 1: Interaction between the IAA behaviors and the Golfcourse ILF behaviors */ 
 
TT, GC_ILF SHARE ALL writing; 
 
 
/* SHARE All 2: Interaction between the IAA behaviors and the Teetimes ILF behaviors */ 
 
TT, Teetimes_ILF SHARE ALL writing; 
 
 
/* SHARE All 3: Interaction between the IAA behaviors and the Scoreboard behaviors */ 
 
TT, Scoreboard_ILF SHARE ALL writing; 
 
 
/* SHARE All 4: Interaction between the IAA behaviors and the Merchandise EIF behaviors */ 
 
TT, Merchandise_EIF SHARE ALL writing; 
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C. MP SCHEMA FOR COURSE OF ACTION 3 

The complete MP schema for COA 3 is included below for ease of inspection, to 

extract the data function types and transactional function types.  

 In order to run the model on Firebird, each MP model was split into two separate 

models, one that executed the data function types, and the other that executed the 

transactional function types. Breaking the model up did not affect the UFP count, but did 

allow the execution of the model in order to obtain event traces, to inform test case 

estimates. 

  
/*  Name: MP SCHEMA COA 3 Nested COORDINATEs and SHARE ALL.  

Purpose: The It’s Tee Time example for UFP estimate is derived from the It’s Tee Time counting 
example, courtesy of Q/P Management Group. TeeTime source information is protected by 
copyright [56]. This example was refined and improvised by Monica Farah-Stapleton 06/20/16, 
and updated by Prof Mikhail Auguston, 06/22/16.  

 Tool Used: MP Analyzed on Firebird 
 Scope: 1       */ 
 
 
 
SCHEMA TeeTime_ Nested_COORDINATEs_SHARE ALL 
 
/* ROOT User: Behaviors executed by the User of the It’s Tee Time application */ 
 
 ROOT User: (* ( (inquire_on_state_data 
     inquire_on_city_data 
     inquire_on_golfcourse_list 
     (* (inquire_on_golfcourse_detail | go_back )*) 
     inquire_on_reservation_display 
     (input_add_reservation_data | 
 input_change_reservation_data |  
 input_delete_reservation_data)  
     inquire_on_maintain_golfcourses 
     (input_add_maintain_golfcourses_data | 
 input_change_maintain_golfcourses_data |  
 input_delete_maintain_golfcourses_data) ) 
    inquire_on_scoreboard_display 
     (input_add_scoreboard_data | 
 input_change_scoreboard_data |  
 input_delete_scoreboard_data)  
    inquire_on_shopping_display 
    (* (inquire_on_product_display 
 calculate_total_amount 
 buy_product )*) 
        | exit)  



 162 

   *); 
 
 inquire_on_state_data: click_state_arrow_dropdown receive_state_list_display; 
 inquire_on_city_data: view_state_data_entered click_on_city_arrow_dropdown  
 receive_city_list_display; 
 
inquire_on_golfcourse_list: view_state_data_entered view_city_data_entered  
 click_list_display_button view_golfcourse_name_displayed; 
 
inquire_on_golfcourse_detail: click_icon_from_golfcourse_list request_id 
 request_name  request_address  request_city  request_state  request_zip 
 request_phone  request_description  request_slope  request_fees  
 request_requirements;  
 
inquire_on_reservation_display: carryover_id  carryover_coursename 
 click_on_date_dropdown click_display  request_time request_no_of_players   
 request_no_of_holes request_name request_cc_type request_cc_no 
 request_phone_no;   
 
input_add_reservation_data: input_id  input_coursename input_date
 input_time 
 input_no_players input_no_holes input_name input_cc_type input_cc_no   
 input_phone_no click_add_button receive_error_confirmation_message; 
 
 
input_change_reservation_data: input_change_id  input_change_coursename  
 input_change_date input_change_time input_change_no_players
 input_change_no_holes  
 input_change_name input_change_cc_type input_change_cc_no   
 input_change_phone_no click_change_button receive_error_confirmation_message; 
 
 
input_delete_reservation_data: input_delete_id  input_delete_coursename  
 input_delete_date input_delete_time click_delete_button  
 receive_error_confirmation_message; 
 
inquire_on_maintain_golfcourses: enter_coursename  click_display_button  request_id   
 request_address request_city request_state  request_zip  request_phone 
 request_description  request_slope  request_fees  request_requirements 
 receive_error_confirmation_message; 
 
input_add_maintain_golfcourses_data: input_add_coursename input_add_address
 input_add_city 
 input_add_state input_add_zip input_add_phone input_add_description
 input_add_slope input_add_fees input_add_requirements click_add_button receive_id
 receive_error_confirmation_message; 
 
input_change_maintain_golfcourses_data: input_change_coursename input_change_address
 input_change_city input_change_state input_change_zip
 input_change_phone input_change_description input_change_slope
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 input_change_fees  input_change_requirements click_change_button 
 receive_id receive_error_confirmation_message; 
 
input_delete_maintain_golfcourses_data: input_delete_id click_delete_button
 receive_error_confirmation_message; 
 
inquire_on_scoreboard_display: click_scoreboard_icon request_name  request_course  
 request_date request_slope  request_score; 
 
input_add_scoreboard_data: input_add_name input_add_course input_add_date 
 input_add_slope  input_add_score click_add_button 
 receive_error_confirmation_message; 
 
input_change_scoreboard_data: input_change_name input_change_course
 input_change_date  input_change_slope  input_change_score
 click_change_button  receive_error_confirmation_message; 
 
input_delete_scoreboard_data: highlight_name click_delete_button
 receive_error_confirmation_message; 
 
inquire_on_shopping_display: click_teetime_shopping_icon  request_product  request_unit_price; 
 
inquire_on_product_display: click_view_icon request_image receive_error_confirmation_message; 
 
calculate_total_amount: enter_quantity calculate_price_action calculate_price  
 calculate_quantity  calculate_total_for_row   calculate_total_bill  
 receive_error_confirmation_message; 
  
buy_product: click_buy_button  receive_product  receive_price  receive_quantity 
 receive_row_total  receive_bill_total receive_cc_type receive_cc_number
 receive_expiration_date receive_mailing_name receive_address  receive_city
 receive_state receive_zip  receive_error_confirmation_message; 
 
 
 
 
/* ROOT TT_GC_ILF: The combined, relevant behaviors of the IAA and Golfcourses ILF */ 
 
ROOT TT_GC_ILF: (* (get_state_result 
     get_city_result 
     get_golfcourse_list_result 
     get_golfcourse_detail_result 
     get_maintain_golfcourses_result 
     (*(add_maintain_golfcourses_data | 
   change_maintain_golfcourses_data |  
   delete_maintain_golfcourses_data)*) )  
             
  
    *); 
  
get_state_result: receive_state_arrow_prompt send_state_list_display; 
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get_city_result: send_state_data_entered receive_city_arrow_prompt  
 send_city_list_display; 
 
get_golfcourse_list_result: send_state_data_entered send_city_data_entered  
 receive_list_display_button_prompt send_golfcourse_name_displayed; 
 
get_golfcourse_detail_result:  get_golfcourse_detail_results send_id  
 send_name  send_address  send_city  send_state  send_zip 
 send_phone  send_description  send_slope  send_fees 
 send_requirements;  
 
get_maintain_golfcourses_result: view_coursename  receive_display_button_prompt  send_id 
 send_address send_city send_state  send_zip  send_phone  send_description 
 send_slope send_fees send_requirements  send_error_confirmation_message; 
 
add_maintain_golfcourses_data: add_coursename add_address add_city 
 add_state add_zip  add_phone add_description add_slope   
 add_fees add_requirements receive_add_button_prompt send_id  
 send_error_confirmation_message; 
 
change_maintain_golfcourses_data: change_coursename change_address change_city 
 change_state change_zip change_phone change_description change_slope 
 change_fees change_requirements receive_change_button_prompt send_id  
 send_error_confirmation_message; 
 
 
 
delete_maintain_golfcourses_data: delete_id receive_delete_button_prompt   
 send_error_confirmation_message; 
 
 
 
 
 
/* ROOT TT_Teetimes_ILF: The combined, relevant behaviors of the IAA and Teetimes ILF */ 
 
ROOT TT_Teetimes_ILF: ( get_reservation_display_result 
      (*(add_reservation_data  
       | change_reservation_data 
        | delete_reservation_data)*) 
     );  
 
 
get_reservation_display_result: display_id display_coursename display_date  
 send_display_results send_time send_no_of_players send_no_of_holes
 send_name send_cc_type send_cc_no send_phone_no; 
 
add_reservation_data: add_id  add_coursename add_date add_time 
 add_no_players add_no_holes add_name add_cc_type  add_cc_no 
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 add_phone_no receive_add_button_response send_error_confirmation_message; 
 
 
change_reservation_data: change_id  change_coursename  
 change_date change_time  change_no_players change_no_holes  
 change_name change_cc_type change_cc_no   
 change_phone_no receive_change_button_response
 send_error_confirmation_message; 
 
delete_reservation_data: delete_id  delete_coursename  
 delete_date delete_time  receive_delete_button_response 
 send_error_confirmation_message; 
 
 
 
/* ROOT TT_Scoreboard_ILF: The combined, relevant behaviors of the IAA and Scoreboard ILF */ 
 
ROOT TT_Scoreboard_ILF: ( get_scoreboard_display_result 
      (*(add_scoreboard_data  
       | change_scoreboard_data 
        | delete_scoreboard_data)*) 
     );  
 
 
get_scoreboard_display_result: receive_scoreboard_icon_prompt send_name  send_course  
 send_date send_slope  send_score; 
 
add_scoreboard_data: add_name add_course add_date add_slope add_score 
 receive_add_button_response   send_error_confirmation_message; 
 
change_scoreboard_data: change_name change_course change_date  change_slope 
 change_score receive_change_button_response send_error_confirmation_message; 
 
delete_scoreboard_data: delete_name receive_delete_button_prompt
 send_error_confirmation_message; 
/* ROOT TT_Merchandise_ILF: The combined, relevant behaviors of the IAA and Merchandise EIF */ 
 
ROOT TT_Merchandise_EIF: ( get_shopping_display_result  
       (*(get_product_display_result get_calculated_total_amount  
     send_calculated_amount_to_purchasing)*) 
     );  
 
get_shopping_display: receive_teetime_shopping_icon_prompt  send_product    
   send_unit_price; 
 
get_product_display: receive_view_icon_prompt  send_image      
  send_error_confirmation_message; 
 
get_calculated_total_amount:  receive_quantity  receive_calculate_price_action_prompt  
 send_price  send_quantity send_total_for_row  send_total_bill  
 send_error_confirmation_message; 
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send_calculated_amount_to_purchasing: receive_buy_button_prompt  send_product 
 send_price  send_quantity  send_row_total  send_bill_total  send_cc_type 
 send_cc_number send_expiration_date send_mailing_name  send_address 
 send_city  send_state   send_zip  
 send_error_confirmation_message; 
 
 
 
/* ROOT TT: The relevant behaviors of the IAA */ 
ROOT TT: (* (writing | reading) *); 
 
/* ROOT GC_ILF: The relevant behaviors of the Golfcourses ILF */ 
ROOT GC_ILF: (+writing +) (*sending*); 
  
/* ROOT Teetimes_ILF: The relevant behaviors of the Teetimes ILF */ 
ROOT Teetimes_ILF: (+writing +) (*sending*); 
 
/* ROOT Scoreboard_ILF: The relevant behaviors of the Teetimes ILF */ 
ROOT Scoreboard_ILF: (+writing +) (*sending*); 
 
/* ROOT Merchandise_EIF: The relevant behaviors of the Merchandise EIF */ 
ROOT Merchandise_EIF: (+writing +) (*sending*); 
 
 
/* COORDINATE 1: Interaction between the User behaviors and TT/Golfcourses ILF behaviors , and nested 
COORDINATE with 2 ADDs representing 2 DETs */ 
 
COORDINATE $a:inquire_on_state_data     FROM User, 
   $b:get_state_result    FROM TT_GC_ILF 
  
DO 
 
  COORDINATE 
 
  $ax: click_state_arrow_dropdown   FROM $a,  
  $bx: receive_state_arrow_prompt   FROM $b, 
   $axx: receive_state_list_display   FROM $a, 
   $bxx: send_state_list_display   FROM $b 
 DO 
   
   
  ADD $ax PRECEDES $bx; 
   ADD $bxx PRECEDES $axx;  
 OD; 
OD; 
 
 
/* COORDINATE 2: Interaction between the User behaviors and TT/Golfcourses ILF behaviors, and nested 
COORDINATE with 3 ADDs representing 3 DETs*/ 
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COORDINATE $c:inquire_on_city_data    FROM User, 
   $d:get_city_result   FROM TT_GC_ILF 
 
DO 
 
  COORDINATE 
 
   $cx1: view_state_data_entered    FROM $c,  
   $dx1: send_state_data_entered    FROM $d, 
    $cx2: click_on_city_arrow_dropdown   FROM $c, 
    $dx2: receive_city_arrow_prompt   FROM $d, 
   $cx3: receive_city_list_display   FROM $c, 
   $dx3: send_city_list_display   FROM $d 
  
 DO  
  ADD $cx1 PRECEDES $dx1; 
   ADD $cx2 PRECEDES $dx2;  
  ADD $dx3 PRECEDES $cx3; 
 
 OD; 
OD; 
 
 
 
/* COORDINATE 3: Interaction between the User behaviors and TT/Golfcourses ILF behaviors, and nested 
COORDINATE with 4 ADDs representing 4 DETs */ 
 
COORDINATE $e:inquire_on_golfcourse_list    FROM User, 
   $f:get_golfcourse_list_result    FROM TT_GC_ILF 
 
DO  
 
COORDINATE 
   $ex1: view_state_data_entered     FROM $e,  
   $fx1: send_state_data_entered     FROM $f, 
    $ex2: view_city_data_entered    FROM $e, 
    $fx2: send_city_data_entered     FROM $f, 
   $ex3: click_list_display_button    FROM $e, 
   $fx3: receive_list_display_button_prompt    FROM $f, 
   $ex4: view_golfcourse_name_displayed    FROM $e, 
   $fx4: send_golfcourse_name_displayed    FROM $f  
  
 DO  
  ADD $ex1 PRECEDES $fx1; 
   ADD $ex2 PRECEDES $fx2;  
  ADD $ex3 PRECEDES $fx3; 
  ADD $fx4 PRECEDES $ex4; 
  
 OD; 
OD; 
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/* COORDINATE 4: Interaction between the User behaviors and TT/Golfcourses ILF behaviors, and nested 
COORDINATE with 12 ADDs representing 12 DETs */ 
 
COORDINATE $g: inquire_on_golfcourse_detail   FROM User, 
  $h: get_golfcourse_detail_result   FROM TT_GC_ILF 
    
DO 
 
COORDINATE 
 
 
  $gx1: click_icon_from_golfcourse_list    FROM $g, 
  $hx1: get_golfcourse_detail_results   FROM $h, 
  $gx2: request_id      FROM $g, 
  $hx2: send_id      FROM $h, 
  $gx3: request_name      FROM $g, 
  $hx3: send_name     FROM $h, 
  $gx4: request_address      FROM $g, 
  $hx4: send_address     FROM $h, 
  $gx5: request_city      FROM $g, 
  $hx5: send_city      FROM $h,  
  $gx6: request_state     FROM $g, 
  $hx6: send_state      FROM $h, 
  $gx7: request_zip      FROM $g, 
  $hx7: send_zip      FROM $h, 
  $gx8: request_phone      FROM $g, 
  $hx8: send_phone     FROM $h, 
  $gx9: request_description     FROM $g, 
  $hx9: send_description     FROM $h, 
  $gx10: request_slope     FROM $g, 
  $hx10: send_slope     FROM $h, 
  $gx11: request_fees      FROM $g, 
  $hx11: send_fees      FROM $h, 
  $gx12: request_requirements     FROM $g, 
  $hx12: send_requirements    FROM $h  
 
 DO   
  ADD $gx1 PRECEDES $hx1; 
   ADD $gx2 PRECEDES $hx2;  
  ADD $gx3 PRECEDES $hx3; 
  ADD $gx4 PRECEDES $hx4; 
  ADD $gx5 PRECEDES $hx5; 
   ADD $gx6 PRECEDES $hx6;  
  ADD $gx7 PRECEDES $hx7; 
  ADD $gx8 PRECEDES $hx8; 
  ADD $gx9 PRECEDES $hx9; 
   ADD $gx10 PRECEDES $hx10;  
  ADD $gx11 PRECEDES $hx11; 
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  ADD $hx12 PRECEDES $gx12; 
 
 
 OD; 
OD; 
 
 
/* COORDINATE 5: Interaction between the User behaviors and TT/Teetimes ILF behaviors, and nested 
COORDINATE with 11 ADDs representing 11 DETs */ 
 
COORDINATE $i:inquire_on_reservation_display  FROM User, 
  $j:get_reservation_display_result   FROM TT_Teetimes_ILF 
  
 DO 
 
 COORDINATE 
 
 
  $ix1: carryover_id     FROM $i, 
  $jx1: display_id     FROM $j, 
  $ix2: carryover_coursename   FROM $i, 
  $jx2: display_coursename    FROM $j, 
  $ix3: click_on_date_dropdown   FROM $i, 
  $jx3: display_date    FROM $j, 
  $ix4: click_display     FROM $i, 
  $jx4: send_display_results    FROM $j, 
  $ix5: request_time    FROM $i, 
  $jx5: send_time     FROM $j,  
  $ix6: request_no_of_players   FROM $i, 
  $jx6: send_no_of_players    FROM $j, 
  $ix7: request_no_of_holes   FROM $i, 
  $jx7: send_no_of_holes    FROM $j, 
  $ix8: request_name     FROM $i, 
  $jx8: send_name     FROM $j, 
  $ix9: request_cc_type    FROM $i, 
  $jx9: send_cc_type    FROM $j, 
  $ix10: request_cc_no    FROM $i, 
  $jx10: send_cc_no    FROM $j, 
  $ix11: request_phone_no    FROM $i, 
  $jx11: send_phone_no    FROM $j 
   
 DO   
  ADD $ix1 PRECEDES $jx1; 
   ADD $ix2 PRECEDES $jx2;  
  ADD $ix3 PRECEDES $jx3; 
  ADD $ix4 PRECEDES $jx4; 
  ADD $ix5 PRECEDES $jx5; 
   ADD $ix6 PRECEDES $jx6;  
  ADD $ix7 PRECEDES $jx7; 
  ADD $ix8 PRECEDES $jx8; 
  ADD $ix9 PRECEDES $jx9; 
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   ADD $ix10 PRECEDES $jx10;  
  ADD $jx11 PRECEDES $ix11; 
   
 
 OD; 
OD; 
 
 
/* COORDINATE 6: Interaction between the User behaviors and TT/Teetimes ILF behaviors and nested 
COORDINATE with 12 ADDs representing 12 DETs */ 
 
COORDINATE $k: input_add_reservation_data    FROM User, 
   $l:add_reservation_data     FROM TT_Teetimes_ILF 
DO 
 
 COORDINATE 
 
   $kx1: input_id     FROM $k, 
   $lx1: add_id     FROM $l, 
   $kx2: input_coursename    FROM $k, 
   $lx2: add_coursename    FROM $l, 
   $kx3: input_date     FROM $k, 
   $lx3: add_date     FROM $l, 
   $kx4: input_time     FROM $k, 
   $lx4: add_time     FROM $l, 
   $kx5: input_no_players     FROM $k, 
   $lx5: add_no_players    FROM $l, 
   $kx6: input_no_holes     FROM $k, 
   $lx6: add_no_holes    FROM $l, 
   $kx7: input_name    FROM $k, 
   $lx7: add_name     FROM $l, 
   $kx8: input_cc_type     FROM $k, 
   $lx8: add_cc_type    FROM $l, 
   $kx9: input_cc_no     FROM $k, 
   $lx9: add_cc_no     FROM $l, 
   $kx10: input_phone_no     FROM $k, 
   $lx10: add_phone_no    FROM $l, 
   $kx11: click_add_button     FROM $k, 
   $lx11: receive_add_button_response  FROM $l, 
   $kx12: receive_error_confirmation_message FROM $k, 
   $lx12: send_error_confirmation_message  FROM $l 
 
 DO 
 
  
  ADD $kx1 PRECEDES $lx1; 
   ADD $kx2 PRECEDES $lx2;  
  ADD $kx3 PRECEDES $lx3; 
  ADD $kx4 PRECEDES $lx4; 
  ADD $kx5 PRECEDES $lx5; 
   ADD $kx6 PRECEDES $lx6;  
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  ADD $kx7 PRECEDES $lx7; 
  ADD $kx8 PRECEDES $lx8; 
  ADD $kx9 PRECEDES $lx9; 
   ADD $kx10 PRECEDES $lx10;  
  ADD $kx11 PRECEDES $lx11; 
  ADD $lx12 PRECEDES $kx12; 
 
 
 OD; 
OD; 
 
 
/* COORDINATE 7: Interaction between the User behaviors and TT/Teetimes ILF behaviors, and nested 
COORDINATE with 12 ADDs representing 12 DETs */ 
 
COORDINATE $m: input_change_reservation_data  FROM User, 
   $n:change_reservation_data   FROM TT_Teetimes_ILF 
 
DO 
 
 COORDINATE 
 
   $mx1: input_change_id     FROM $m, 
   $nx1: change_id     FROM $n, 
   $mx2: input_change_coursename   FROM $m, 
   $nx2: change_coursename   FROM $n, 
   $mx3: input_change_date    FROM $m, 
   $nx3: change_date    FROM $n, 
   $mx4: input_change_time    FROM $m, 
   $nx4: change_time    FROM $n, 
   $mx5: input_change_no_players   FROM $m, 
   $nx5: change_no_players    FROM $n, 
   $mx6: input_change_no_holes    FROM $m, 
   $nx6: change_no_holes    FROM $n, 
   $mx7: input_change_name   FROM $m, 
   $nx7: change_name    FROM $n, 
   $mx8: input_change_cc_type   FROM $m, 
   $nx8: change_cc_type    FROM $n, 
   $mx9: input_change_cc_no   FROM $m, 
   $nx9: change_cc_no    FROM $n, 
   $mx10: input_change_phone_no   FROM $m, 
   $nx10: change_phone_no    FROM $n, 
   $mx11: click_change_button    FROM $m, 
   $nx11: receive_change_button_response  FROM $n, 
   $mx12: receive_error_confirmation_message FROM $m, 
   $nx12: send_error_confirmation_message  FROM $n 
 
 DO 
 
  
  ADD $mx1 PRECEDES $nx1; 
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   ADD $mx2 PRECEDES $nx2;  
  ADD $mx3 PRECEDES $nx3; 
  ADD $mx4 PRECEDES $nx4; 
  ADD $mx5 PRECEDES $nx5; 
   ADD $mx6 PRECEDES $nx6;  
  ADD $mx7 PRECEDES $nx7; 
  ADD $mx8 PRECEDES $nx8; 
  ADD $mx9 PRECEDES $nx9; 
   ADD $mx10 PRECEDES $nx10;  
  ADD $mx11 PRECEDES $nx11; 
  ADD $nx12 PRECEDES $mx12; 
 OD; 
OD; 
 
 
 
 
/* COORDINATE 8: Interaction between the User behaviors and TT/Teetimes ILF behaviors, and nested 
COORDINATE with 6 ADDs representing 6 DETs */ 
 
COORDINATE $o:input_delete_reservation_data FROM User, 
   $p:delete_reservation_data   FROM TT_Teetimes_ILF 
DO 
 
 COORDINATE 
 
   $ox1: input_delete_id     FROM $o, 
   $px1: delete_id     FROM $p, 
   $ox2: input_delete_coursename    FROM $o, 
   $px2: delete_coursename    FROM $p, 
   $ox3: input_delete_date    FROM $o, 
   $px3: delete_date    FROM $p, 
   $ox4: input_delete_time    FROM $o, 
   $px4: delete_time    FROM $p, 
   $ox5: click_delete_button     FROM $o, 
   $px5: receive_delete_button_response  FROM $p, 
   $ox6: receive_error_confirmation_message  FROM $o, 
   $px6: send_error_confirmation_message  FROM $p 
 
 DO 
  ADD $ox1 PRECEDES $px1; 
   ADD $ox2 PRECEDES $px2;  
  ADD $ox3 PRECEDES $px3; 
  ADD $ox4 PRECEDES $px4; 
  ADD $ox5 PRECEDES $px5; 
   ADD $px6 PRECEDES $ox6;  
 OD; 
OD; 
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/* COORDINATE 9: Interaction between the User behaviors and TT/Golfcourses ILF behaviors, and nested 
COORDINATE with 13 ADDs representing 13 DETs */ 
 
COORDINATE $q:inquire_on_maintain_golfcourses   FROM User, 
  $r:get_maintain_golfcourses_result   FROM TT_GC_ILF 
    
 DO 
 
 COORDINATE 
 
  $qx1: enter_coursename      FROM $q, 
  $rx1: view_coursename    FROM $r, 
  $qx2: click_display_button   FROM $q, 
  $rx2: receive_display_button_prompt  FROM $r, 
  $qx3: request_id     FROM $q, 
  $rx3: send_id     FROM $r, 
  $qx4: request_address     FROM $q, 
  $rx4: send_address    FROM $r, 
  $qx5: request_city    FROM $q, 
  $rx5: send_city     FROM $r,  
  $qx6: request_state    FROM $q, 
  $rx6: send_state     FROM $r, 
  $qx7: request_zip    FROM $q, 
  $rx7: send_zip     FROM $r, 
  $qx8: request_phone    FROM $q, 
  $rx8: send_phone    FROM $r, 
  $qx9: request_description    FROM $q, 
  $rx9: send_description    FROM $r, 
  $qx10: request_slope    FROM $q, 
  $rx10: send_slope    FROM $r, 
  $qx11: request_fees    FROM $q, 
  $rx11: send_fees     FROM $r, 
  $qx12: request_requirements   FROM $q, 
  $rx12: send_requirements    FROM $r, 
  $qx13: receive_error_confirmation_message FROM $q, 
  $rx13: send_error_confirmation_message  FROM $r 
  
 
 
 DO   
  ADD $qx1 PRECEDES $rx1; 
   ADD $qx2 PRECEDES $rx2;  
  ADD $qx3 PRECEDES $rx3; 
  ADD $qx4 PRECEDES $rx4; 
  ADD $qx5 PRECEDES $rx5; 
   ADD $qx6 PRECEDES $rx6;  
  ADD $qx7 PRECEDES $rx7; 
  ADD $qx8 PRECEDES $rx8; 
  ADD $qx9 PRECEDES $rx9; 
   ADD $qx10 PRECEDES $rx10;  
  ADD $qx11 PRECEDES $rx11; 
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  ADD $qx12 PRECEDES $rx12;  
  ADD $rx13 PRECEDES $qx13; 
   
 
 OD; 
OD; 
 
 
 
/* COORDINATE 10: Interaction between the User behaviors and TT/Golfcourses ILF behaviors, and 
nested COORDINATE with 13 ADDs representing 13 DETs */ 
 
COORDINATE $s:input_add_maintain_golfcourses_data   FROM User, 
   $t:add_maintain_golfcourses_data   FROM TT_GC_ILF 
 DO 
 
 COORDINATE 
 
  $sx1: input_add_coursename    FROM $s, 
  $tx1: add_coursename    FROM $t, 
  $sx2: input_add_address     FROM $s, 
  $tx2: add_address    FROM $t, 
  $sx3: input_add_city    FROM $s, 
  $tx3: add_city     FROM $t,  
  $sx4: input_add_state    FROM $s, 
  $tx4: add_state     FROM $t, 
  $sx5: input_add_zip    FROM $s, 
  $tx5: add_zip     FROM $t, 
  $sx6: input_add_phone    FROM $s, 
  $tx6: add_phone     FROM $t, 
  $sx7: input_add_description   FROM $s, 
  $tx7: add_description    FROM $t, 
  $sx8: input_add_slope    FROM $s, 
  $tx8: add_slope     FROM $t, 
  $sx9: input_add_fees    FROM $s, 
  $tx9: add_fees     FROM $t, 
  $sx10: input_add_requirements   FROM $s, 
  $tx10: add_requirements    FROM $t, 
  $sx11: click_add_button    FROM $s, 
  $tx11: receive_add_button_prompt  FROM $t, 
  $sx12: receive_id     FROM $s, 
  $tx12: send_id     FROM $t, 
  $sx13: receive_error_confirmation_message FROM $s, 
  $tx13: send_error_confirmation_message  FROM $t 
  
 DO   
  ADD $sx1 PRECEDES $tx1; 
   ADD $sx2 PRECEDES $tx2;  
  ADD $sx3 PRECEDES $tx3; 
  ADD $sx4 PRECEDES $tx4; 
  ADD $sx5 PRECEDES $tx5; 
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   ADD $sx6 PRECEDES $tx6;  
  ADD $sx7 PRECEDES $tx7; 
  ADD $sx8 PRECEDES $tx8; 
  ADD $sx9 PRECEDES $tx9; 
   ADD $sx10 PRECEDES $tx10;  
  ADD $sx11 PRECEDES $tx11; 
  ADD $tx12 PRECEDES $sx12;  
  ADD $tx13 PRECEDES $sx13; 
   
 OD; 
OD; 
 
 
/* COORDINATE 11: Interaction between the User behaviors and TT/Golfcourses ILF behaviors, and 
nested COORDINATE with 13 ADDs representing 13 DETs */ 
 
COORDINATE $u:input_change_maintain_golfcourses_data  FROM User, 
   $v:change_maintain_golfcourses_data  FROM TT_GC_ILF 
 
 DO 
 
 COORDINATE 
 
  $ux1: input_change_coursename    FROM $u, 
  $vx1: change_coursename   FROM $v, 
  $ux2: input_change_address    FROM $u, 
  $vx2: change_address    FROM $v, 
  $ux3: input_change_city    FROM $u, 
  $vx3: change_city    FROM $v,  
  $ux4: input_change_state    FROM $u, 
  $vx4: change_state    FROM $v, 
  $ux5: input_change_zip    FROM $u, 
  $vx5: change_zip     FROM $v, 
  $ux6: input_change_phone   FROM $u, 
  $vx6: change_phone    FROM $v, 
  $ux7: input_change_description   FROM $u, 
  $vx7: change_description    FROM $v, 
  $ux8: input_change_slope    FROM $u, 
  $vx8: change_slope    FROM $v, 
  $ux9: input_change_fees    FROM $u, 
  $vx9: change_fees    FROM $v, 
  $ux10: input_change_requirements  FROM $u, 
  $vx10: change_requirements   FROM $v, 
  $ux11: click_change_button   FROM $u, 
  $vx11: receive_change_button_prompt  FROM $v, 
  $ux12: receive_id     FROM $u, 
  $vx12: send_id     FROM $v, 
  $ux13: receive_error_confirmation_message FROM $u, 
  $vx13: send_error_confirmation_message  FROM $v 
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 DO   
  ADD $ux1 PRECEDES $vx1; 
   ADD $ux2 PRECEDES $vx2;  
  ADD $ux3 PRECEDES $vx3; 
  ADD $ux4 PRECEDES $vx4; 
  ADD $ux5 PRECEDES $vx5; 
   ADD $ux6 PRECEDES $vx6;  
  ADD $ux7 PRECEDES $vx7; 
  ADD $ux8 PRECEDES $vx8; 
  ADD $ux9 PRECEDES $vx9; 
   ADD $ux10 PRECEDES $vx10;  
  ADD $ux11 PRECEDES $vx11; 
  ADD $vx12 PRECEDES $ux12;  
  ADD $vx13 PRECEDES $ux13; 
   
 
 OD; 
OD; 
 
 
/* COORDINATE 12: Interaction between the User behaviors and TT/Golfcourses ILF behaviors, and 
nested COORDINATE with 3 ADDs representing 3 DETs */ 
COORDINATE $w:input_delete_maintain_golfcourses_data   FROM User, 
   $x:delete_maintain_golfcourses_data   FROM TT_GC_ILF 
  
DO 
 
 COORDINATE 
 
  $wx1: input_delete_id     FROM $w, 
  $xx1: delete_id     FROM $x, 
  $wx2: click_delete_button     FROM $w, 
  $xx2: receive_delete_button_prompt  FROM $x, 
  $wx3: input_change_city    FROM $w, 
  $xx3: change_city    FROM $x  
   
  
 
 
 DO   
  ADD $wx1 PRECEDES $xx1; 
   ADD $xx2 PRECEDES $wx2;  
  ADD $xx3 PRECEDES $wx3; 
   
 
 OD; 
OD; 
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/* COORDINATE 13: Interaction between the User behaviors and TT/Scoreboard ILF behaviors, and nested 
COORDINATE with 6 ADDs representing 6 DETs */ 
 
COORDINATE $y: inquire_on_scoreboard_display  FROM User, 
  $z: get_scoreboard_display_result   FROM TT_Scoreboard_ILF 
 
DO 
 
 COORDINATE 
 
  $yx1: click_scoreboard_icon    FROM $y, 
  $zx1: receive_scoreboard_icon_prompt   FROM $z, 
  $yx2: request_name      FROM $y, 
  $zx2: send_name      FROM $z, 
  $yx3: request_course     FROM $y, 
  $zx3: send_course     FROM $z,  
  $yx4: request_date     FROM $y, 
  $zx4: send_date      FROM $z,  
  $yx5: request_slope     FROM $y, 
  $zx5: send_slope      FROM $z,  
  $yx6: request_score     FROM $y, 
  $zx6: send_score      FROM $z  
 
 DO   
  ADD $yx1 PRECEDES $zx1; 
   ADD $yx2 PRECEDES $zx2;  
  ADD $yx3 PRECEDES $zx3; 
  ADD $yx4 PRECEDES $zx4; 
   ADD $yx5 PRECEDES $zx5;  
  ADD $yx6 PRECEDES $zx6; 
 
 OD; 
OD; 
 
 
/* COORDINATE 14: Interaction between the User behaviors and TT/Scoreboard ILF behaviors, and nested 
COORDINATE with 7 ADDs representing 7 DETs */ 
 
 
COORDINATE $aa: input_add_scoreboard_data    FROM User, 
   $bb: add_scoreboard_data    FROM TT_Scoreboard_ILF 
 
DO 
 
 COORDINATE 
 
  $aax1: input_add_name     FROM $aa, 
  $bbx1: add_name     FROM $bb, 
  $aax2: input_add_course     FROM $aa, 
  $bbx2: add_course     FROM $bb, 
  $aax3: input_add_date     FROM $aa, 
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  $bbx3: add_date      FROM $bb,  
  $aax4: input_add_slope     FROM $aa, 
  $bbx4: add_slope      FROM $bb,  
  $aax5: input_add_score     FROM $aa, 
  $bbx5: add_score     FROM $bb,  
  $aax6: click_add_button     FROM $aa, 
  $bbx6: receive_add_button_response   FROM $bb,  
  $aax7: receive_error_confirmation_message  FROM $aa, 
  $bbx7: send_error_confirmation_message   FROM $bb  
 
  
 DO   
  ADD $aax1 PRECEDES $bbx1; 
   ADD $aax2 PRECEDES $bbx2;  
  ADD $aax3 PRECEDES $bbx3; 
  ADD $aax4 PRECEDES $bbx4; 
   ADD $aax5 PRECEDES $bbx5;  
  ADD $aax6 PRECEDES $bbx6; 
  ADD $aax7 PRECEDES $bbx7; 
 
 OD; 
OD; 
 
 
/* COORDINATE 15: Interaction between the User behaviors and TT/Scoreboard ILF behaviors, and nested 
COORDINATE with 7 ADDs representing 7 DETs */ 
 
 
COORDINATE $cc: input_change_scoreboard_data    FROM User, 
   $dd: change_scoreboard_data    FROM TT_Scoreboard_ILF 
 
DO 
 
 COORDINATE 
 
  $ccx1: input_change_name   FROM $cc, 
  $ddx1: change_name    FROM $dd, 
  $ccx2: input_change_course   FROM $cc, 
  $ddx2: change_course    FROM $dd, 
  $ccx3: input_change_date    FROM $cc, 
  $ddx3: change_date    FROM $dd,  
  $ccx4: input_change_slope   FROM $cc, 
  $ddx4: change_slope    FROM $dd,  
  $ccx5: input_change_score   FROM $cc, 
  $ddx5: change_score    FROM $dd,  
  $ccx6: click_change_button   FROM $cc, 
  $ddx6: receive_change_button_response  FROM $dd,  
  $ccx7: receive_error_confirmation_message FROM $cc, 
  $ddx7: send_error_confirmation_message  FROM $dd  
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 DO   
  ADD $ccx1 PRECEDES $ddx1; 
   ADD $ccx2 PRECEDES $ddx2;  
  ADD $ccx3 PRECEDES $ddx3; 
  ADD $ccx4 PRECEDES $ddx4; 
   ADD $ccx5 PRECEDES $ddx5;  
  ADD $ccx6 PRECEDES $ddx6; 
  ADD $ccx7 PRECEDES $ddx7; 
 
 OD; 
OD; 
 
 
 
 
 
 
/* COORDINATE 16: Interaction between the User behaviors and TT/Scoreboard ILF behaviors, and nested 
COORDINATE with 3 ADDs representing 3 DETs */ 
 
COORDINATE $ee: input_delete_scoreboard_data    FROM User, 
   $ff: delete_scoreboard_data    FROM TT_Scoreboard_ILF 
 
DO 
 
 COORDINATE 
 
  $eex1: highlight_name     FROM $ee, 
  $ffx1: delete_name     FROM $ff, 
  $eex2: click_delete_button    FROM $ee, 
  $ffx2: receive_delete_button_prompt   FROM $ff, 
  $eex3: receive_error_confirmation_message  FROM $ee, 
  $ffx3: send_error_confirmation_message   FROM $ff  
   
 
  
 DO   
  ADD $eex1 PRECEDES $ffx1; 
   ADD $eex2 PRECEDES $ffx2;  
  ADD $ffx3 PRECEDES $eex3; 
   
 OD; 
OD; 
 
 
/* COORDINATE 17: Interaction between the User behaviors and TT/Merchandise EIF behaviors, and 
nested COORDINATE with 3 ADDs representing 3 DETs */ 
 
COORDINATE $gg: inquire_on_shopping_display  FROM User, 
  $hh: get_shopping_display_result   FROM TT_Merchandise_EIF 
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DO 
 
 COORDINATE 
 
  $ggx1: click_teetime_shopping_icon   FROM $gg, 
  $hhx1: receive_teetime_shopping_icon_prompt  FROM $hh, 
  $ggx2: request_product     FROM $gg, 
  $hhx2: send_product     FROM $hh, 
  $ggx3: request_unit_price     FROM $gg, 
  $hhx3: send_unit_price     FROM $hh  
   
 
  
 DO   
  ADD $ggx1 PRECEDES $hhx1; 
   ADD $ggx2 PRECEDES $hhx2;  
  ADD $hhx3 PRECEDES $ggx3; 
   
 OD; 
OD; 
 
/* COORDINATE 18: Interaction between the User behaviors and TT/Merchandise EIF behaviors, and 
nested COORDINATE with 3 ADDs representing 3 DETs */ 
 
 
COORDINATE $ii:inquire_on_product_display  FROM User, 
  $jj:get_product_display_result   FROM TT_Merchandise_EIF 
    
 
DO 
 
 COORDINATE 
 
  $iix1: click_view_icon    FROM $ii, 
  $jjx1: receive_view_icon_prompt   FROM $jj, 
  $iix2: request_image     FROM $ii, 
  $jjx2: send_image    FROM $jj, 
  $iix3: receive_error_confirmation_message  FROM $ii, 
  $jjx3: send_error_confirmation_message  FROM $jj  
   
 
  
 DO   
  ADD $iix1 PRECEDES $jjx1; 
   ADD $iix2 PRECEDES $jjx2;  
  ADD $jjx3 PRECEDES $iix3; 
   
 OD; 
OD; 
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/* COORDINATE 19: Interaction between the User behaviors and TT/Merchandise EIF behaviors, and 
nested COORDINATE with 7 ADDs representing 7 DETs */ 
 
COORDINATE $kk: calculate_total_amount    FROM User, 
  $ll:get_calculated_total_amount     FROM TT_Merchandise_EIF 
    
DO 
 
 COORDINATE 
    
  $kkx1: enter_quantity     FROM $kk, 
  $llx1: receive_quantity    FROM $ll, 
  $kkx2: calculate_price_action    FROM $kk, 
  $llx2: receive_calculate_price_action_prompt FROM $ll, 
  $kkx3: calculate_price    FROM $kk, 
  $llx3: send_price     FROM $ll,  
  $kkx4: calculate_quantity     FROM $kk, 
  $llx4: send_quantity    FROM $ll, 
  $kkx5: calculate_total_for_row   FROM $kk, 
  $llx5: send_total_for_row    FROM $ll, 
  $kkx6: calculate_total_bill    FROM $kk, 
  $llx6: send_total_bill     FROM $ll,  
  $kkx7: receive_error_confirmation_message FROM $kk, 
  $llx7: receive_error_confirmation_message  FROM $ll  
 
  
 DO   
  ADD $kkx1 PRECEDES $llx1; 
   ADD $kkx2 PRECEDES $llx2;  
  ADD $kkx3 PRECEDES $llx3; 
  ADD $kkx4 PRECEDES $llx4; 
   ADD $kkx5 PRECEDES $llx5;  
  ADD $kkx6 PRECEDES $llx6; 
  ADD $llx7 PRECEDES $kkx7; 
 
 
 
 
 OD; 
OD; 
 
 
/* COORDINATE 20: Interaction between the User behaviors and TT/Merchandise ILF behaviors, and 
nested COORDINATE with 15 ADDs representing 15 DETs */ 
 
 
COORDINATE    $mm: buy_product   FROM User, 

$nn: send_calculated_amount_to_purchasing  FROM TT_Merchandise_EIF 
    
DO 
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 COORDINATE 
 
  $mmx1: click_buy_button     FROM $mm, 
  $nnx1:  receive_buy_button_prompt  FROM $nn, 
  $mmx2: receive_product      FROM $mm, 
  $nnx2: send_product    FROM $nn, 
  $mmx3: receive_price     FROM $mm, 
  $nnx3: send_price     FROM $nn,  
  $mmx4: receive_quantity    FROM $mm, 
  $nnx4: send_quantity    FROM $nn, 
  $mmx5: receive_row_total    FROM $mm, 
  $nnx5: send_row_total     FROM $nn, 
  $mmx6: receive_bill_total    FROM $mm, 
  $nnx6: send_bill_total    FROM $nn, 
  $mmx7: receive_cc_type    FROM $mm, 
  $nnx7: send_cc_type    FROM $nn, 
  $mmx8: receive_cc_number   FROM $mm, 
  $nnx8: send_cc_number    FROM $nn, 
  $mmx9: receive_expiration_date   FROM $mm, 
  $nnx9: send_expiration_date   FROM $nn, 
  $mmx10: receive_mailing_name   FROM $mm, 
  $nnx10: send_mailing_name   FROM $nn, 
  $mmx11: receive_address    FROM $mm, 
  $nnx11: send_address    FROM $nn, 
  $mmx12: receive_city    FROM $mm, 
  $nnx12: send_city    FROM $nn, 
  $mmx13: receive_state    FROM $mm, 
  $nnx13: send_state    FROM $nn, 
  $mmx14: receive_zip     FROM $mm, 
  $nnx14: send_zip     FROM $nn, 
  $mmx15: receive_error_confirmation_message FROM $mm, 
  $nnx15: send_error_confirmation_message  FROM $nn 
  
 DO   
  ADD $mmx1 PRECEDES $nnx1; 
   ADD $mmx2 PRECEDES $nnx2;  
  ADD $mmx3 PRECEDES $nnx3; 
  ADD $mmx4 PRECEDES $nnx4; 
  ADD $mmx5 PRECEDES $nnx5; 
   ADD $mmx6 PRECEDES $nnx6;  
  ADD $mmx7 PRECEDES $nnx7; 
  ADD $mmx8 PRECEDES $nnx8; 
  ADD $mmx9 PRECEDES $nnx9; 
   ADD $mmx10 PRECEDES $nnx10;  
  ADD $mmx11 PRECEDES $nnx11; 
  ADD $mmx12 PRECEDES $nnx12;  
  ADD $mmx13 PRECEDES $nnx13; 
  ADD $mmx14 PRECEDES $nnx14;  
  ADD $nnx15 PRECEDES $mmx15; 
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 OD; 
OD; 
 
 
/* Data Function Calculation using SHARE ALL and assuming Average functional complexity and size rather 
than specific RET/DET calculation */ 
 
/* SHARE All 1 */ 
TT, GC_ILF SHARE ALL writing; 
 
/* SHARE All 2 */ 
TT, Teetimes_ILF SHARE ALL writing; 
 
/* SHARE All 3 */ 
TT, Scoreboard_ILF SHARE ALL writing; 
 
/* SHARE All 4 */ 
TT, Merchandise_EIF SHARE ALL writing; 
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D. MP SCHEMA FOR COURSE OF ACTION 4 

  
/*  Name: MP SCHEMA COA 4 Nested COORDINATEs for Data and Transactional  Functions. 

Purpose: The It’s Tee Time example for UFP estimate is derived from the It’s  TeeTime 
counting example, courtesy of Q/P Management Group. Tee Time source information is 
protected by copyright [56]. This example was refined and improvised by Monica Farah-
Stapleton 06/20/16, and updated by Prof Mikhail Auguston, 06/22/16.  

 Tool Used: MP Analyzed on Firebird 
 Scope: 1   */ 
 
SCHEMA TeeTime_Nested COORDINATEs_Trans_Data 
 
/* ROOT User: Behaviors executed by the User of the It’s Tee Time application */ 
 
 ROOT User: (* ( (inquire_on_state_data 
     inquire_on_city_data 
     inquire_on_golfcourse_list 
     (* (inquire_on_golfcourse_detail | go_back )*) 
     inquire_on_reservation_display 
     (input_add_reservation_data | 
 input_change_reservation_data |  
 input_delete_reservation_data)  
     inquire_on_maintain_golfcourses 
     (input_add_maintain_golfcourses_data | 
 input_change_maintain_golfcourses_data |  
 input_delete_maintain_golfcourses_data) ) 
    inquire_on_scoreboard_display 
     (input_add_scoreboard_data | 
 input_change_scoreboard_data |  
 input_delete_scoreboard_data)  
    inquire_on_shopping_display 
    (* (inquire_on_product_display 
 calculate_total_amount 
 buy_product )*) 
        | exit)  
   *); 
 
 inquire_on_state_data: click_state_arrow_dropdown receive_state_list_display; 
 inquire_on_city_data: view_state_data_entered click_on_city_arrow_dropdown  
 receive_city_list_display; 
 
inquire_on_golfcourse_list: view_state_data_entered view_city_data_entered  
 click_list_display_button view_golfcourse_name_displayed; 
 
inquire_on_golfcourse_detail: click_icon_from_golfcourse_list request_id 
 request_name  request_address  request_city  request_state  request_zip 
 request_phone  request_description  request_slope  request_fees  
 request_requirements;  
 
inquire_on_reservation_display: carryover_id  carryover_coursename 
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 click_on_date_dropdown click_display  request_time request_no_of_players   
 request_no_of_holes request_name request_cc_type request_cc_no 
 request_phone_no;   
 
input_add_reservation_data: input_id  input_coursename input_date
 input_time 
 input_no_players input_no_holes input_name input_cc_type input_cc_no   
 input_phone_no click_add_button receive_error_confirmation_message; 
 
 
input_change_reservation_data: input_change_id  input_change_coursename  
 input_change_date input_change_time input_change_no_players
 input_change_no_holes  
 input_change_name input_change_cc_type input_change_cc_no   
 input_change_phone_no click_change_button receive_error_confirmation_message; 
 
 
input_delete_reservation_data: input_delete_id  input_delete_coursename  
 input_delete_date input_delete_time click_delete_button  
 receive_error_confirmation_message; 
 
inquire_on_maintain_golfcourses: enter_coursename  click_display_button  request_id   
 request_address request_city request_state  request_zip  request_phone 
 request_description  request_slope  request_fees  request_requirements 
 receive_error_confirmation_message; 
 
input_add_maintain_golfcourses_data: input_add_coursename input_add_address
 input_add_city 
 input_add_state input_add_zip input_add_phone input_add_description
 input_add_slope input_add_fees input_add_requirements click_add_button receive_id
 receive_error_confirmation_message; 
 
input_change_maintain_golfcourses_data: input_change_coursename input_change_address
 input_change_city input_change_state input_change_zip
 input_change_phone input_change_description input_change_slope
 input_change_fees  input_change_requirements click_change_button 
 receive_id receive_error_confirmation_message; 
 
input_delete_maintain_golfcourses_data: input_delete_id click_delete_button
 receive_error_confirmation_message; 
 
inquire_on_scoreboard_display: click_scoreboard_icon request_name  request_course  
 request_date request_slope  request_score; 
 
input_add_scoreboard_data: input_add_name input_add_course input_add_date 
 input_add_slope  input_add_score click_add_button 
 receive_error_confirmation_message; 
 
input_change_scoreboard_data: input_change_name input_change_course
 input_change_date  input_change_slope  input_change_score
 click_change_button  receive_error_confirmation_message; 
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input_delete_scoreboard_data: highlight_name click_delete_button
 receive_error_confirmation_message; 
 
inquire_on_shopping_display: click_teetime_shopping_icon  request_product  request_unit_price; 
 
inquire_on_product_display: click_view_icon request_image receive_error_confirmation_message; 
 
calculate_total_amount: enter_quantity calculate_price_action calculate_price  
 calculate_quantity  calculate_total_for_row   calculate_total_bill  
 receive_error_confirmation_message; 
  
buy_product: click_buy_button  receive_product  receive_price  receive_quantity 
 receive_row_total  receive_bill_total receive_cc_type receive_cc_number
 receive_expiration_date receive_mailing_name receive_address  receive_city
 receive_state receive_zip  receive_error_confirmation_message; 
 
 
 
 
/* ROOT TT_GC_ILF: The combined, relevant behaviors of the IAA and Golfcourses ILF */ 
 
ROOT TT_GC_ILF: (* (get_state_result 
     get_city_result 
     get_golfcourse_list_result 
     get_golfcourse_detail_result 
     get_maintain_golfcourses_result 
     (*(add_maintain_golfcourses_data | 
   change_maintain_golfcourses_data |  
   delete_maintain_golfcourses_data)*) )  
             
  
    *); 
  
get_state_result: receive_state_arrow_prompt send_state_list_display; 
 
get_city_result: send_state_data_entered receive_city_arrow_prompt  
 send_city_list_display; 
 
get_golfcourse_list_result: send_state_data_entered send_city_data_entered  
 receive_list_display_button_prompt send_golfcourse_name_displayed; 
 
get_golfcourse_detail_result:  get_golfcourse_detail_results send_id  
 send_name  send_address  send_city  send_state  send_zip 
 send_phone  send_description  send_slope  send_fees 
 send_requirements;  
 
get_maintain_golfcourses_result: view_coursename  receive_display_button_prompt  send_id 
 send_address send_city send_state  send_zip  send_phone  send_description 
 send_slope send_fees send_requirements  send_error_confirmation_message; 
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add_maintain_golfcourses_data: add_coursename add_address add_city 
 add_state add_zip  add_phone add_description add_slope   
 add_fees add_requirements receive_add_button_prompt send_id  
 send_error_confirmation_message; 
 
change_maintain_golfcourses_data: change_coursename change_address change_city 
 change_state change_zip change_phone change_description change_slope 
 change_fees change_requirements receive_change_button_prompt send_id  
 send_error_confirmation_message; 
 
 
delete_maintain_golfcourses_data: delete_id receive_delete_button_prompt   
 send_error_confirmation_message; 
 
 
 
 
 
/* ROOT TT_Teetimes_ILF: The combined, relevant behaviors of the IAA and Teetimes ILF */ 
 
ROOT TT_Teetimes_ILF: ( get_reservation_display_result 
      (*(add_reservation_data  
       | change_reservation_data 
        | delete_reservation_data)*) 
     );  
 
 
get_reservation_display_result: display_id display_coursename display_date  
 send_display_results send_time send_no_of_players send_no_of_holes
 send_name send_cc_type send_cc_no send_phone_no; 
 
add_reservation_data: add_id  add_coursename add_date add_time 
 add_no_players add_no_holes add_name add_cc_type  add_cc_no 
  
 add_phone_no receive_add_button_response send_error_confirmation_message; 
 
 
change_reservation_data: change_id  change_coursename  
 change_date change_time  change_no_players change_no_holes  
 change_name change_cc_type change_cc_no   
 change_phone_no receive_change_button_response
 send_error_confirmation_message; 
 
delete_reservation_data: delete_id  delete_coursename  
 delete_date delete_time  receive_delete_button_response 
 send_error_confirmation_message; 
 
 
 
/* ROOT TT_Scoreboard_ILF: The combined, relevant behaviors of the IAA and Scoreboard ILF */ 
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ROOT TT_Scoreboard_ILF: ( get_scoreboard_display_result 
      (*(add_scoreboard_data  
       | change_scoreboard_data 
        | delete_scoreboard_data)*) 
     );  
 
 
get_scoreboard_display_result: receive_scoreboard_icon_prompt send_name  send_course  
 send_date send_slope  send_score; 
 
add_scoreboard_data: add_name add_course add_date add_slope add_score 
 receive_add_button_response   send_error_confirmation_message; 
 
change_scoreboard_data: change_name change_course change_date  change_slope 
 change_score receive_change_button_response send_error_confirmation_message; 
 
delete_scoreboard_data: delete_name receive_delete_button_prompt
 send_error_confirmation_message; 
 
 
/* ROOT TT_Merchandise_EIF: The combined, relevant behaviors of the IAA and Merchandise EIF */ 
 
ROOT TT_Merchandise_EIF: ( get_shopping_display_result  
       (*(get_product_display_result get_calculated_total_amount  
     send_calculated_amount_to_purchasing)*) 
     );  
 
get_shopping_display: receive_teetime_shopping_icon_prompt  send_product    
   send_unit_price; 
 
get_product_display: receive_view_icon_prompt  send_image      
  send_error_confirmation_message; 
 
get_calculated_total_amount:  receive_quantity  receive_calculate_price_action_prompt  
 send_price  send_quantity send_total_for_row  send_total_bill  
 send_error_confirmation_message; 
 
send_calculated_amount_to_purchasing: receive_buy_button_prompt  send_product 
 send_price  send_quantity  send_row_total  send_bill_total  send_cc_type 
 send_cc_number send_expiration_date send_mailing_name  send_address 
 send_city  send_state   send_zip  
 send_error_confirmation_message; 
 
 
 
 
 
/* COORDINATE 1: Interaction between the User behaviors and TT/Golfcourses ILF behaviors , and nested 
COORDINATE with 2 ADDs representing 2 DETs */ 
 
COORDINATE $a:inquire_on_state_data    FROM User, 
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   $b:get_state_result   FROM TT_GC_ILF 
  
DO 
 
  COORDINATE 
 
  $ax: click_state_arrow_dropdown   FROM $a,  
  $bx: receive_state_arrow_prompt   FROM $b, 
   $axx: receive_state_list_display   FROM $a, 
   $bxx: send_state_list_display   FROM $b 
 DO 
   
   
  ADD $ax PRECEDES $bx; 
   ADD $bxx PRECEDES $axx;  
 OD; 
OD; 
 
 
/* COORDINATE 2: Interaction between the User behaviors and TT/Golfcourses ILF behaviors, and nested 
COORDINATE with 3 ADDs representing 3 DETs*/ 
 
COORDINATE $c:inquire_on_city_data    FROM User, 
   $d:get_city_result   FROM TT_GC_ILF 
 
DO 
 
  COORDINATE 
 
   $cx1: view_state_data_entered   FROM $c,  
   $dx1: send_state_data_entered   FROM $d, 
    $cx2: click_on_city_arrow_dropdown  FROM $c, 
    $dx2: receive_city_arrow_prompt  FROM $d, 
   $cx3: receive_city_list_display  FROM $c, 
   $dx3: send_city_list_display  FROM $d 
  
 DO  
  ADD $cx1 PRECEDES $dx1; 
   ADD $cx2 PRECEDES $dx2;  
  ADD $dx3 PRECEDES $cx3; 
 
 OD; 
OD; 
 
 
 
/* COORDINATE 3: Interaction between the User behaviors and TT/Golfcourses ILF behaviors, and nested 
COORDINATE with 4 ADDs representing 4 DETs */ 
 
COORDINATE $e:inquire_on_golfcourse_list   FROM User, 
   $f:get_golfcourse_list_result   FROM TT_GC_ILF 
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DO  
 
COORDINATE 
   $ex1: view_state_data_entered    FROM $e,  
   $fx1: send_state_data_entered    FROM $f, 
    $ex2: view_city_data_entered   FROM $e, 
    $fx2: send_city_data_entered    FROM $f, 
   $ex3: click_list_display_button   FROM $e, 
   $fx3: receive_list_display_button_prompt   FROM $f, 
   $ex4: view_golfcourse_name_displayed   FROM $e, 
   $fx4: send_golfcourse_name_displayed   FROM $f  
  
 DO  
  ADD $ex1 PRECEDES $fx1; 
   ADD $ex2 PRECEDES $fx2;  
  ADD $ex3 PRECEDES $fx3; 
  ADD $fx4 PRECEDES $ex4; 
  
 OD; 
OD; 
 
 
 
 
/* COORDINATE 4: Interaction between the User behaviors and TT/Golfcourses ILF behaviors, and nested 
COORDINATE with 12 ADDs representing 12 DETs */ 
 
COORDINATE $g: inquire_on_golfcourse_detail   FROM User, 
  $h: get_golfcourse_detail_result    FROM TT_GC_ILF 
    
DO 
 
COORDINATE 
 
 
  $gx1: click_icon_from_golfcourse_list   FROM $g, 
  $hx1: get_golfcourse_detail_results  FROM $h, 
  $gx2: request_id     FROM $g, 
  $hx2: send_id     FROM $h, 
  $gx3: request_name     FROM $g, 
  $hx3: send_name    FROM $h, 
  $gx4: request_address     FROM $g, 
  $hx4: send_address    FROM $h, 
  $gx5: request_city     FROM $g, 
  $hx5: send_city     FROM $h,  
  $gx6: request_state    FROM $g, 
  $hx6: send_state     FROM $h, 
  $gx7: request_zip     FROM $g, 
  $hx7: send_zip     FROM $h, 
  $gx8: request_phone     FROM $g, 
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  $hx8: send_phone    FROM $h, 
  $gx9: request_description    FROM $g, 
  $hx9: send_description    FROM $h, 
  $gx10: request_slope    FROM $g, 
  $hx10: send_slope    FROM $h, 
  $gx11: request_fees     FROM $g, 
  $hx11: send_fees     FROM $h, 
  $gx12: request_requirements    FROM $g, 
  $hx12: send_requirements   FROM $h  
 
 DO   
  ADD $gx1 PRECEDES $hx1; 
   ADD $gx2 PRECEDES $hx2;  
  ADD $gx3 PRECEDES $hx3; 
  ADD $gx4 PRECEDES $hx4; 
  ADD $gx5 PRECEDES $hx5; 
   ADD $gx6 PRECEDES $hx6;  
  ADD $gx7 PRECEDES $hx7; 
  ADD $gx8 PRECEDES $hx8; 
  ADD $gx9 PRECEDES $hx9; 
   ADD $gx10 PRECEDES $hx10;  
  ADD $gx11 PRECEDES $hx11; 
  ADD $hx12 PRECEDES $gx12; 
 
 
 OD; 
OD; 
 
 
/* COORDINATE 5: Interaction between the User behaviors and TT/Teetimes ILF behaviors, and nested 
COORDINATE with 11 ADDs representing 11 DETs */ 
 
COORDINATE $i:inquire_on_reservation_display  FROM User, 
  $j:get_reservation_display_result   FROM TT_Teetimes_ILF 
  
 DO 
 
 COORDINATE 
 
 
  $ix1: carryover_id   FROM $i, 
  $jx1: display_id    FROM $j, 
  $ix2: carryover_coursename  FROM $i, 
  $jx2: display_coursename   FROM $j, 
  $ix3: click_on_date_dropdown  FROM $i, 
  $jx3: display_date   FROM $j, 
  $ix4: click_display    FROM $i, 
  $jx4: send_display_results   FROM $j, 
  $ix5: request_time   FROM $i, 
  $jx5: send_time    FROM $j,  
  $ix6: request_no_of_players  FROM $i, 
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  $jx6: send_no_of_players   FROM $j, 
  $ix7: request_no_of_holes  FROM $i, 
  $jx7: send_no_of_holes   FROM $j, 
  $ix8: request_name    FROM $i, 
  $jx8: send_name    FROM $j, 
  $ix9: request_cc_type   FROM $i, 
  $jx9: send_cc_type   FROM $j, 
  $ix10: request_cc_no   FROM $i, 
  $jx10: send_cc_no   FROM $j, 
  $ix11: request_phone_no   FROM $i, 
  $jx11: send_phone_no   FROM $j 
   
 DO   
  ADD $ix1 PRECEDES $jx1; 
   ADD $ix2 PRECEDES $jx2;  
  ADD $ix3 PRECEDES $jx3; 
  ADD $ix4 PRECEDES $jx4; 
  ADD $ix5 PRECEDES $jx5; 
   ADD $ix6 PRECEDES $jx6;  
  ADD $ix7 PRECEDES $jx7; 
  ADD $ix8 PRECEDES $jx8; 
  ADD $ix9 PRECEDES $jx9; 
   ADD $ix10 PRECEDES $jx10;  
  ADD $jx11 PRECEDES $ix11; 
   
 
 OD; 
OD; 
 
 
/* COORDINATE 6: Interaction between the User behaviors and TT/Teetimes ILF behaviors and nested 
COORDINATE with 12 ADDs representing 12 DETs */ 
 
COORDINATE $k: input_add_reservation_data   FROM User, 
   $l:add_reservation_data   FROM TT_Teetimes_ILF 
DO 
 
 COORDINATE 
 
   $kx1: input_id    FROM $k, 
   $lx1: add_id    FROM $l, 
   $kx2: input_coursename   FROM $k, 
   $lx2: add_coursename   FROM $l, 
   $kx3: input_date    FROM $k, 
   $lx3: add_date    FROM $l, 
   $kx4: input_time    FROM $k, 
   $lx4: add_time    FROM $l, 
   $kx5: input_no_players    FROM $k, 
   $lx5: add_no_players   FROM $l, 
   $kx6: input_no_holes   FROM $k, 
   $lx6: add_no_holes   FROM $l, 
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   $kx7: input_name   FROM $k, 
   $lx7: add_name    FROM $l, 
   $kx8: input_cc_type   FROM $k, 
   $lx8: add_cc_type   FROM $l, 
   $kx9: input_cc_no   FROM $k, 
   $lx9: add_cc_no    FROM $l, 
   $kx10: input_phone_no    FROM $k, 
   $lx10: add_phone_no   FROM $l, 
   $kx11: click_add_button    FROM $k, 
   $lx11: receive_add_button_response FROM $l, 
   $kx12: receive_error_confirmation_message  FROM $k, 
   $lx12: send_error_confirmation_message   FROM $l 
 
 DO 
 
  
  ADD $kx1 PRECEDES $lx1; 
   ADD $kx2 PRECEDES $lx2;  
  ADD $kx3 PRECEDES $lx3; 
  ADD $kx4 PRECEDES $lx4; 
  ADD $kx5 PRECEDES $lx5; 
   ADD $kx6 PRECEDES $lx6;  
  ADD $kx7 PRECEDES $lx7; 
  ADD $kx8 PRECEDES $lx8; 
  ADD $kx9 PRECEDES $lx9; 
   ADD $kx10 PRECEDES $lx10;  
  ADD $kx11 PRECEDES $lx11; 
  ADD $lx12 PRECEDES $kx12; 
 
 
 OD; 
OD; 
 
 
/* COORDINATE 7: Interaction between the User behaviors and TT/Teetimes ILF behaviors, and nested 
COORDINATE with 12 ADDs representing 12 DETs */ 
 
COORDINATE $m: input_change_reservation_data   FROM User, 
   $n:change_reservation_data   FROM TT_Teetimes_ILF 
 
DO 
 
 COORDINATE 
 
   $mx1: input_change_id    FROM $m, 
   $nx1: change_id    FROM $n, 
   $mx2: input_change_coursename  FROM $m, 
   $nx2: change_coursename  FROM $n, 
   $mx3: input_change_date   FROM $m, 
   $nx3: change_date   FROM $n, 
   $mx4: input_change_time   FROM $m, 
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   $nx4: change_time   FROM $n, 
   $mx5: input_change_no_players  FROM $m, 
   $nx5: change_no_players   FROM $n, 
   $mx6: input_change_no_holes  FROM $m, 
   $nx6: change_no_holes   FROM $n, 
   $mx7: input_change_name  FROM $m, 
   $nx7: change_name   FROM $n, 
   $mx8: input_change_cc_type  FROM $m, 
   $nx8: change_cc_type   FROM $n, 
   $mx9: input_change_cc_no  FROM $m, 
   $nx9: change_cc_no   FROM $n, 
   $mx10: input_change_phone_no  FROM $m, 
   $nx10: change_phone_no   FROM $n, 
   $mx11: click_change_button  FROM $m, 
   $nx11: receive_change_button_response FROM $n, 
   $mx12: receive_error_confirmation_message FROM $m, 
   $nx12: send_error_confirmation_message  FROM $n 
 
 DO 
 
  
  ADD $mx1 PRECEDES $nx1; 
   ADD $mx2 PRECEDES $nx2;  
  ADD $mx3 PRECEDES $nx3; 
  ADD $mx4 PRECEDES $nx4; 
  ADD $mx5 PRECEDES $nx5; 
   ADD $mx6 PRECEDES $nx6;  
  ADD $mx7 PRECEDES $nx7; 
  ADD $mx8 PRECEDES $nx8; 
  ADD $mx9 PRECEDES $nx9; 
   ADD $mx10 PRECEDES $nx10;  
  ADD $mx11 PRECEDES $nx11; 
  ADD $nx12 PRECEDES $mx12; 
 OD; 
OD; 
 
 
 
 
/* COORDINATE 8: Interaction between the User behaviors and TT/Teetimes ILF behaviors, and nested 
COORDINATE with 6 ADDs representing 6 DETs */ 
 
COORDINATE $o:input_delete_reservation_data FROM User, 
   $p:delete_reservation_data   FROM TT_Teetimes_ILF 
DO 
 
 COORDINATE 
 
   $ox1: input_delete_id     FROM $o, 
   $px1: delete_id     FROM $p, 
   $ox2: input_delete_coursename    FROM $o, 
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   $px2: delete_coursename    FROM $p, 
   $ox3: input_delete_date    FROM $o, 
   $px3: delete_date    FROM $p, 
   $ox4: input_delete_time    FROM $o, 
   $px4: delete_time    FROM $p, 
   $ox5: click_delete_button     FROM $o, 
   $px5: receive_delete_button_response  FROM $p, 
   $ox6: receive_error_confirmation_message  FROM $o, 
   $px6: send_error_confirmation_message  FROM $p 
 
 DO 
  ADD $ox1 PRECEDES $px1; 
   ADD $ox2 PRECEDES $px2;  
  ADD $ox3 PRECEDES $px3; 
  ADD $ox4 PRECEDES $px4; 
  ADD $ox5 PRECEDES $px5; 
   ADD $px6 PRECEDES $ox6;  
 OD; 
OD; 
 
 
 
/* COORDINATE 9: Interaction between the User behaviors and TT/Golfcourses ILF behaviors, and nested 
COORDINATE with 13 ADDs representing 13 DETs */ 
 
COORDINATE $q:inquire_on_maintain_golfcourses   FROM User, 
  $r:get_maintain_golfcourses_result   FROM TT_GC_ILF 
    
 DO 
 
 COORDINATE 
 
  $qx1: enter_coursename     FROM $q, 
  $rx1: view_coursename   FROM $r, 
  $qx2: click_display_button  FROM $q, 
  $rx2: receive_display_button_prompt FROM $r, 
  $qx3: request_id    FROM $q, 
  $rx3: send_id    FROM $r, 
  $qx4: request_address    FROM $q, 
  $rx4: send_address   FROM $r, 
  $qx5: request_city   FROM $q, 
  $rx5: send_city    FROM $r,  
  $qx6: request_state   FROM $q, 
  $rx6: send_state    FROM $r, 
  $qx7: request_zip   FROM $q, 
  $rx7: send_zip    FROM $r, 
  $qx8: request_phone   FROM $q, 
  $rx8: send_phone   FROM $r, 
  $qx9: request_description   FROM $q, 
  $rx9: send_description   FROM $r, 
  $qx10: request_slope   FROM $q, 
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  $rx10: send_slope   FROM $r, 
  $qx11: request_fees   FROM $q, 
  $rx11: send_fees    FROM $r, 
  $qx12: request_requirements  FROM $q, 
  $rx12: send_requirements   FROM $r, 
  $qx13: receive_error_confirmation_message FROM $q, 
  $rx13: send_error_confirmation_message  FROM $r 
  
 
 
 DO   
  ADD $qx1 PRECEDES $rx1; 
   ADD $qx2 PRECEDES $rx2;  
  ADD $qx3 PRECEDES $rx3; 
  ADD $qx4 PRECEDES $rx4; 
  ADD $qx5 PRECEDES $rx5; 
   ADD $qx6 PRECEDES $rx6;  
  ADD $qx7 PRECEDES $rx7; 
  ADD $qx8 PRECEDES $rx8; 
  ADD $qx9 PRECEDES $rx9; 
   ADD $qx10 PRECEDES $rx10;  
  ADD $qx11 PRECEDES $rx11; 
  ADD $qx12 PRECEDES $rx12;  
  ADD $rx13 PRECEDES $qx13; 
   
 
 OD; 
OD; 
 
 
 
/* COORDINATE 10: Interaction between the User behaviors and TT/Golfcourses ILF behaviors, and 
nested COORDINATE with 13 ADDs representing 13 DETs */ 
 
COORDINATE $s:input_add_maintain_golfcourses_data   FROM User, 
   $t:add_maintain_golfcourses_data   FROM TT_GC_ILF 
 DO 
 
 COORDINATE 
 
  $sx1: input_add_coursename    FROM $s, 
  $tx1: add_coursename    FROM $t, 
  $sx2: input_add_address     FROM $s, 
  $tx2: add_address    FROM $t, 
  $sx3: input_add_city    FROM $s, 
  $tx3: add_city     FROM $t,  
  $sx4: input_add_state    FROM $s, 
  $tx4: add_state     FROM $t, 
  $sx5: input_add_zip    FROM $s, 
  $tx5: add_zip     FROM $t, 
  $sx6: input_add_phone    FROM $s, 
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  $tx6: add_phone     FROM $t, 
  $sx7: input_add_description   FROM $s, 
  $tx7: add_description    FROM $t, 
  $sx8: input_add_slope    FROM $s, 
  $tx8: add_slope     FROM $t, 
  $sx9: input_add_fees    FROM $s, 
  $tx9: add_fees     FROM $t, 
  $sx10: input_add_requirements   FROM $s, 
  $tx10: add_requirements    FROM $t, 
  $sx11: click_add_button    FROM $s, 
  $tx11: receive_add_button_prompt  FROM $t, 
  $sx12: receive_id     FROM $s, 
  $tx12: send_id     FROM $t, 
  $sx13: receive_error_confirmation_message FROM $s, 
  $tx13: send_error_confirmation_message  FROM $t 
  
 DO   
  ADD $sx1 PRECEDES $tx1; 
   ADD $sx2 PRECEDES $tx2;  
  ADD $sx3 PRECEDES $tx3; 
  ADD $sx4 PRECEDES $tx4; 
  ADD $sx5 PRECEDES $tx5; 
   ADD $sx6 PRECEDES $tx6;  
  ADD $sx7 PRECEDES $tx7; 
  ADD $sx8 PRECEDES $tx8; 
  ADD $sx9 PRECEDES $tx9; 
   ADD $sx10 PRECEDES $tx10;  
  ADD $sx11 PRECEDES $tx11; 
  ADD $tx12 PRECEDES $sx12;  
  ADD $tx13 PRECEDES $sx13; 
   
 OD; 
OD; 
 
 
/* COORDINATE 11: Interaction between the User behaviors and TT/Golfcourses ILF behaviors, and 
nested COORDINATE with 13 ADDs representing 13 DETs */ 
 
COORDINATE $u:input_change_maintain_golfcourses_data  FROM User, 
   $v:change_maintain_golfcourses_data   FROM TT_GC_ILF 
 
 DO 
 
 COORDINATE 
 
  $ux1: input_change_coursename    FROM $u, 
  $vx1: change_coursename   FROM $v, 
  $ux2: input_change_address    FROM $u, 
  $vx2: change_address    FROM $v, 
  $ux3: input_change_city    FROM $u, 
  $vx3: change_city    FROM $v,  
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  $ux4: input_change_state    FROM $u, 
  $vx4: change_state    FROM $v, 
  $ux5: input_change_zip    FROM $u, 
  $vx5: change_zip     FROM $v, 
  $ux6: input_change_phone   FROM $u, 
  $vx6: change_phone    FROM $v, 
  $ux7: input_change_description   FROM $u, 
  $vx7: change_description    FROM $v, 
  $ux8: input_change_slope    FROM $u, 
  $vx8: change_slope    FROM $v, 
  $ux9: input_change_fees    FROM $u, 
  $vx9: change_fees    FROM $v, 
  $ux10: input_change_requirements  FROM $u, 
  $vx10: change_requirements   FROM $v, 
  $ux11: click_change_button   FROM $u, 
  $vx11: receive_change_button_prompt  FROM $v, 
  $ux12: receive_id     FROM $u, 
  $vx12: send_id     FROM $v, 
  $ux13: receive_error_confirmation_message FROM $u, 
  $vx13: send_error_confirmation_message  FROM $v 
  
 
 
 DO   
  ADD $ux1 PRECEDES $vx1; 
   ADD $ux2 PRECEDES $vx2;  
  ADD $ux3 PRECEDES $vx3; 
  ADD $ux4 PRECEDES $vx4; 
  ADD $ux5 PRECEDES $vx5; 
   ADD $ux6 PRECEDES $vx6;  
  ADD $ux7 PRECEDES $vx7; 
  ADD $ux8 PRECEDES $vx8; 
  ADD $ux9 PRECEDES $vx9; 
   ADD $ux10 PRECEDES $vx10;  
  ADD $ux11 PRECEDES $vx11; 
  ADD $vx12 PRECEDES $ux12;  
  ADD $vx13 PRECEDES $ux13; 
   
 
 OD; 
OD; 
 
 
/* COORDINATE 12: Interaction between the User behaviors and TT/Golfcourses ILF behaviors, and 
nested COORDINATE with 3 ADDs representing 3 DETs */ 
 
COORDINATE $w:input_delete_maintain_golfcourses_data   FROM User, 
   $x:delete_maintain_golfcourses_data   FROM TT_GC_ILF 
  
DO 
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 COORDINATE 
 
  $wx1: input_delete_id     FROM $w, 
  $xx1: delete_id     FROM $x, 
  $wx2: click_delete_button     FROM $w, 
  $xx2: receive_delete_button_prompt  FROM $x, 
  $wx3: input_change_city    FROM $w, 
  $xx3: change_city    FROM $x  
   
  
 
 
 DO   
  ADD $wx1 PRECEDES $xx1; 
   ADD $xx2 PRECEDES $wx2;  
  ADD $xx3 PRECEDES $wx3; 
   
 
 OD; 
OD; 
 
 
/* COORDINATE 13: Interaction between the User behaviors and TT/Scoreboard ILF behaviors, and nested 
COORDINATE with 6 ADDs representing 6 DETs */ 
 
COORDINATE $y: inquire_on_scoreboard_display   FROM User, 
  $z: get_scoreboard_display_result    FROM TT_Scoreboard_ILF 
 
DO 
 
 COORDINATE 
 
  $yx1: click_scoreboard_icon   FROM $y, 
  $zx1: receive_scoreboard_icon_prompt  FROM $z, 
  $yx2: request_name     FROM $y, 
  $zx2: send_name     FROM $z, 
  $yx3: request_course    FROM $y, 
  $zx3: send_course    FROM $z,  
  $yx4: request_date    FROM $y, 
  $zx4: send_date     FROM $z,  
  $yx5: request_slope    FROM $y, 
  $zx5: send_slope     FROM $z,  
  $yx6: request_score    FROM $y, 
  $zx6: send_score     FROM $z  
 
 DO   
  ADD $yx1 PRECEDES $zx1; 
   ADD $yx2 PRECEDES $zx2;  
  ADD $yx3 PRECEDES $zx3; 
  ADD $yx4 PRECEDES $zx4; 
   ADD $yx5 PRECEDES $zx5;  
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  ADD $yx6 PRECEDES $zx6; 
 
 OD; 
OD; 
 
 
/* COORDINATE 14: Interaction between the User behaviors and TT/Scoreboard ILF behaviors, and nested 
COORDINATE with 7 ADDs representing 7 DETs */ 
 
 
COORDINATE $aa: input_add_scoreboard_data    FROM User, 
   $bb: add_scoreboard_data    FROM TT_Scoreboard_ILF 
 
DO 
 
 COORDINATE 
 
  $aax1: input_add_name    FROM $aa, 
  $bbx1: add_name    FROM $bb, 
  $aax2: input_add_course    FROM $aa, 
  $bbx2: add_course    FROM $bb, 
  $aax3: input_add_date    FROM $aa, 
  $bbx3: add_date     FROM $bb,  
  $aax4: input_add_slope    FROM $aa, 
  $bbx4: add_slope     FROM $bb,  
  $aax5: input_add_score    FROM $aa, 
  $bbx5: add_score    FROM $bb,  
  $aax6: click_add_button    FROM $aa, 
  $bbx6: receive_add_button_response  FROM $bb,  
  $aax7: receive_error_confirmation_message FROM $aa, 
  $bbx7: send_error_confirmation_message  FROM $bb  
 
  
 DO   
  ADD $aax1 PRECEDES $bbx1; 
   ADD $aax2 PRECEDES $bbx2;  
  ADD $aax3 PRECEDES $bbx3; 
  ADD $aax4 PRECEDES $bbx4; 
   ADD $aax5 PRECEDES $bbx5;  
  ADD $aax6 PRECEDES $bbx6; 
  ADD $aax7 PRECEDES $bbx7; 
 
 OD; 
OD; 
 
 
/* COORDINATE 15: Interaction between the User behaviors and TT/Scoreboard ILF behaviors, and nested 
COORDINATE with 7 ADDs representing 7 DETs */ 
 
 
COORDINATE $cc: input_change_scoreboard_data  FROM User, 



 201 

   $dd: change_scoreboard_data   FROM TT_Scoreboard_ILF 
 
DO 
 
 COORDINATE 
 
  $ccx1: input_change_name   FROM $cc, 
  $ddx1: change_name    FROM $dd, 
  $ccx2: input_change_course   FROM $cc, 
  $ddx2: change_course    FROM $dd, 
  $ccx3: input_change_date    FROM $cc, 
  $ddx3: change_date    FROM $dd,  
  $ccx4: input_change_slope   FROM $cc, 
  $ddx4: change_slope    FROM $dd,  
  $ccx5: input_change_score   FROM $cc, 
  $ddx5: change_score    FROM $dd,  
  $ccx6: click_change_button   FROM $cc, 
  $ddx6: receive_change_button_response  FROM $dd,  
  $ccx7: receive_error_confirmation_message FROM $cc, 
  $ddx7: send_error_confirmation_message  FROM $dd  
 
  
 DO   
  ADD $ccx1 PRECEDES $ddx1; 
   ADD $ccx2 PRECEDES $ddx2;  
  ADD $ccx3 PRECEDES $ddx3; 
  ADD $ccx4 PRECEDES $ddx4; 
   ADD $ccx5 PRECEDES $ddx5;  
  ADD $ccx6 PRECEDES $ddx6; 
  ADD $ccx7 PRECEDES $ddx7; 
 
 OD; 
OD; 
 
 
/* COORDINATE 16: Interaction between the User behaviors and TT/Scoreboard ILF behaviors, and nested 
COORDINATE with 3 ADDs representing 3 DETs */ 
 
COORDINATE $ee: input_delete_scoreboard_data   FROM User, 
   $ff: delete_scoreboard_data   FROM TT_Scoreboard_ILF 
 
DO 
 
 COORDINATE 
 
  $eex1: highlight_name    FROM $ee, 
  $ffx1: delete_name    FROM $ff, 
  $eex2: click_delete_button   FROM $ee, 
  $ffx2: receive_delete_button_prompt  FROM $ff, 
  $eex3: receive_error_confirmation_message FROM $ee, 
  $ffx3: send_error_confirmation_message  FROM $ff  
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 DO   
  ADD $eex1 PRECEDES $ffx1; 
   ADD $eex2 PRECEDES $ffx2;  
  ADD $ffx3 PRECEDES $eex3; 
   
 OD; 
OD; 
 
 
/* COORDINATE 17: Interaction between the User behaviors and TT/Merchandise EIF behaviors, and 
nested COORDINATE with 3 ADDs representing 3 DETs */ 
 
COORDINATE $gg: inquire_on_shopping_display   FROM User, 
  $hh: get_shopping_display_result    FROM TT_Merchandise_EIF 
 
DO 
 
 COORDINATE 
 
  $ggx1: click_teetime_shopping_icon  FROM $gg, 
  $hhx1: receive_teetime_shopping_icon_prompt FROM $hh, 
  $ggx2: request_product    FROM $gg, 
  $hhx2: send_product    FROM $hh, 
  $ggx3: request_unit_price    FROM $gg, 
  $hhx3: send_unit_price    FROM $hh  
   
 
  
 DO   
  ADD $ggx1 PRECEDES $hhx1; 
   ADD $ggx2 PRECEDES $hhx2;  
  ADD $hhx3 PRECEDES $ggx3; 
   
 OD; 
OD; 
 
 
 
 
/* COORDINATE 18: Interaction between the User behaviors and TT/Merchandise EIF behaviors, and 
nested COORDINATE with 3 ADDs representing 3 DETs */ 
 
 
COORDINATE $ii:inquire_on_product_display  FROM User, 
  $jj:get_product_display_result   FROM TT_Merchandise_EIF 
    
 
DO 
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 COORDINATE 
 
  $iix1: click_view_icon    FROM $ii, 
  $jjx1: receive_view_icon_prompt   FROM $jj, 
  $iix2: request_image     FROM $ii, 
  $jjx2: send_image    FROM $jj, 
  $iix3: receive_error_confirmation_message  FROM $ii, 
  $jjx3: send_error_confirmation_message  FROM $jj  
   
 
  
 DO   
  ADD $iix1 PRECEDES $jjx1; 
   ADD $iix2 PRECEDES $jjx2;  
  ADD $jjx3 PRECEDES $iix3; 
   
 OD; 
OD; 
 
 
 
/* COORDINATE 19: Interaction between the User behaviors and TT/Merchandise EIF behaviors, and 
nested COORDINATE with 7 ADDs representing 7 DETs */ 
 
COORDINATE $kk: calculate_total_amount  FROM User, 
  $ll:get_calculated_total_amount   FROM TT_Merchandise_EIF 
    
DO 
 
 COORDINATE 
    
  $kkx1: enter_quantity     FROM $kk, 
  $llx1: receive_quantity    FROM $ll, 
  $kkx2: calculate_price_action    FROM $kk, 
  $llx2: receive_calculate_price_action_prompt FROM $ll, 
  $kkx3: calculate_price    FROM $kk, 
  $llx3: send_price     FROM $ll,  
  $kkx4: calculate_quantity     FROM $kk, 
  $llx4: send_quantity    FROM $ll, 
  $kkx5: calculate_total_for_row   FROM $kk, 
  $llx5: send_total_for_row    FROM $ll, 
  $kkx6: calculate_total_bill    FROM $kk, 
  $llx6: send_total_bill     FROM $ll,  
  $kkx7: receive_error_confirmation_message FROM $kk, 
  $llx7: receive_error_confirmation_message  FROM $ll  
 
  
 DO   
  ADD $kkx1 PRECEDES $llx1; 
   ADD $kkx2 PRECEDES $llx2;  
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  ADD $kkx3 PRECEDES $llx3; 
  ADD $kkx4 PRECEDES $llx4; 
   ADD $kkx5 PRECEDES $llx5;  
  ADD $kkx6 PRECEDES $llx6; 
  ADD $llx7 PRECEDES $kkx7; 
 
 
 
 
 OD; 
OD; 
 
 
/* COORDINATE 20: Interaction between the User behaviors and TT/Merchandise EIF behaviors, and 
nested COORDINATE with 15 ADDs representing 15 DETs */ 
 
 
COORDINATE   $mm: buy_product   FROM User, 
 $nn: send_calculated_amount_to_purchasing FROM TT_Merchandise_EIF 
    
DO 
 
 COORDINATE 
 
  $mmx1: click_buy_button     FROM $mm, 
  $nnx1: receive_buy_button_prompt  FROM $nn, 
  $mmx2: receive_product      FROM $mm, 
  $nnx2: send_product    FROM $nn, 
  $mmx3: receive_price     FROM $mm, 
  $nnx3: send_price     FROM $nn,  
  $mmx4: receive_quantity    FROM $mm, 
  $nnx4: send_quantity    FROM $nn, 
  $mmx5: receive_row_total    FROM $mm, 
  $nnx5: send_row_total     FROM $nn, 
  $mmx6: receive_bill_total    FROM $mm, 
  $nnx6: send_bill_total    FROM $nn, 
  $mmx7: receive_cc_type    FROM $mm, 
  $nnx7: send_cc_type    FROM $nn, 
  $mmx8: receive_cc_number   FROM $mm, 
  $nnx8: send_cc_number    FROM $nn, 
  $mmx9: receive_expiration_date   FROM $mm, 
  $nnx9: send_expiration_date   FROM $nn, 
  $mmx10: receive_mailing_name   FROM $mm, 
  $nnx10: send_mailing_name   FROM $nn, 
  $mmx11: receive_address    FROM $mm, 
  $nnx11: send_address    FROM $nn, 
  $mmx12: receive_city    FROM $mm, 
  $nnx12: send_city    FROM $nn, 
  $mmx13: receive_state    FROM $mm, 
  $nnx13: send_state    FROM $nn, 
  $mmx14: receive_zip     FROM $mm, 
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  $nnx14: send_zip     FROM $nn, 
  $mmx15: receive_error_confirmation_message FROM $mm, 
  $nnx15: send_error_confirmation_message  FROM $nn 
  
 DO   
  ADD $mmx1 PRECEDES $nnx1; 
   ADD $mmx2 PRECEDES $nnx2;  
  ADD $mmx3 PRECEDES $nnx3; 
  ADD $mmx4 PRECEDES $nnx4; 
  ADD $mmx5 PRECEDES $nnx5; 
   ADD $mmx6 PRECEDES $nnx6;  
  ADD $mmx7 PRECEDES $nnx7; 
  ADD $mmx8 PRECEDES $nnx8; 
  ADD $mmx9 PRECEDES $nnx9; 
   ADD $mmx10 PRECEDES $nnx10;  
  ADD $mmx11 PRECEDES $nnx11; 
  ADD $mmx12 PRECEDES $nnx12;  
  ADD $mmx13 PRECEDES $nnx13; 
  ADD $mmx14 PRECEDES $nnx14;  
  ADD $nnx15 PRECEDES $mmx15; 
 
 
 OD; 
OD; 
 
/* Data Function Calculation using COORDINATEs */ 
 
/* ROOT TT: The relevant behaviors of the IAA */ 
 
ROOT TT: ( * (request | no_action ) * ); 
 
request: request_GC_id  request_GC_coursename request_GC_address 
request_GC_city  request_GC_state request_GC_zip  request_GC_phone
 request_GC_description request_GC_slope  request_GC_fees 
 request_GC_requirements  
 
 request_TT_id  request_TT_coursename request_TT_date_repeating  
 request_TT_teetime request_TT_no_players 
 request_TT_no_holes  request_TT_golfer_name request_TT_credit_card_type  
 request_TT_credit_card_number request_TT_phone_number 
 
 request_scoreboard_golfer_name   request_scoreboard_coursename 
 request_scoreboard_date  request_scoreboard_slope
 request_scoreboard_score 
 
 
 request_Merch_product_name  request_Merch_price  request_Merch_picture; 
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/* ROOT GC_ILF: The relevant behaviors of the Golfcourses ILF */ 
 
ROOT GC_ILF: (*( respond | no_action)*); 
 
respond: respond_GC_id respond_GC_coursename  respond_GC_address 
respond_GC_city  respond_GC_state respond_GC_zip respond_GC_phone
 respond_GC_description  respond_GC_slope respond_GC_fees 
 respond_GC_requirements; 
 
 
/* ROOT Teetimes_ILF: The relevant behaviors of the Teetimes ILF */ 
 
ROOT Teetimes_ILF: (*( respond1 | no_action)* ); 
respond1: respond_TT_id  respond_TT_coursename 
respond_TT_date_repeating  respond_TT_teetime  
respond_TT_no_players respond_TT_no_holes  respond_TT_golfer_name 
respond_TT_credit_card_type respond_TT_credit_card_number 
respond_TT_phone_number; 
 
 
/* ROOT Scoreboard_ILF: The relevant behaviors of the Scoreboard ILF */ 
 
ROOT Scoreboard_ILF: (* ( respond2 | no_action) *); 
respond2: respond_scoreboard_golfer_name  respond_scoreboard_coursename 
 respond_scoreboard_date respond_scoreboard_slope respond_scoreboard_score; 
 
 
/* ROOT Merchandise_EIF: The relevant behaviors of the Merchandise EIF */ 
ROOT Merchandise_EIF: (*(respond3 | no action)*); 
respond3: respond_Merch_product_name respond_Merch_price 
respond_Merch_picture; 
 
 
 
/* COORDINATE 21: Interaction between the TT IAA and the Golf Courses ILF, and nested COORDINATE 
with 11 ADDs representing 11 DETs */ 
 
 
COORDINATE    $oo: request    FROM TT, 
   $pp: respond    FROM GC_ILF 
    
DO 
 
 COORDINATE 
 
  $oox1: request_GC_id    FROM $oo, 
  $ppx1: respond_GC_id    FROM $pp, 
  $oox2: request_GC_coursename    FROM $oo, 
  $ppx2: respond_GC_coursename   FROM $pp, 
  $oox3: request_GC_address   FROM $oo, 
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  $ppx3: respond_GC_address    FROM $pp,  
  $oox4: request_GC_city    FROM $oo, 
  $ppx4: respond_GC_city    FROM $pp, 
  $oox5: request_GC_state    FROM $oo, 
  $ppx5: respond_GC_state     FROM $pp, 
  $oox6: request_GC_zip    FROM $oo, 
  $ppx6: respond_GC_zip    FROM $pp, 
  $oox7: request_GC_phone   FROM $oo, 
  $ppx7: respond_GC_phone   FROM $pp, 
  $oox8: request_GC_description   FROM $oo, 
  $ppx8: respond_GC_description   FROM $pp, 
  $oox9: request_GC_slope    FROM $oo, 
  $ppx9: respond_GC_slope    FROM $pp, 
  $oox10: request_GC_fees    FROM $oo, 
  $ppx10: respond_GC_fees    FROM $pp, 
  $oox11: request_GC_requirements   FROM $oo, 
  $ppx11: respond_GC_requirements  FROM $pp 
   
 DO   
  ADD $oox1 PRECEDES $ppx1; 
   ADD $oox2 PRECEDES $ppx2;  
  ADD $oox3 PRECEDES $ppx3; 
  ADD $oox4 PRECEDES $ppx4; 
  ADD $oox5 PRECEDES $ppx5; 
   ADD $oox6 PRECEDES $ppx6;  
  ADD $oox7 PRECEDES $ppx7; 
  ADD $oox8 PRECEDES $ppx8; 
  ADD $oox9 PRECEDES $ppx9; 
   ADD $oox10 PRECEDES $ppx10;  
  ADD $oox11 PRECEDES $ppx11; 
   
 
 
 OD; 
OD; 
 
 
/* COORDINATE 22: Interaction between the TT IAA and the Tee Times ILF, and nested COORDINATE with 
10 ADDs representing 10 DETs */ 
 
 
COORDINATE    $qq: request    FROM TT, 
    $rr: respond1    FROM Teetimes_ILF 
    
DO 
 
 COORDINATE 
 
 
  $qqx1: request_TT_id     FROM $qq, 
  $rrx1: respond_TT_id    FROM $rr, 
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  $qqx2: request_TT_coursename    FROM $qq, 
  $rrx2: respond_TT_coursename   FROM $rr, 
  $qqx3: request_TT_date_repeating   FROM $qq, 
  $rrx3: respond_TT_date_repeating   FROM $rr,  
  $qqx4: request_TT_teetime   FROM $qq, 
  $rrx4: respond_TT_teetime   FROM $rr, 
  $qqx5: request_TT_no_players   FROM $qq, 
  $rrx5: respond_TT_no_players   FROM $rr, 
  $qqx6: request_TT_no_holes   FROM $qq, 
  $rrx6: respond_TT_no_holes   FROM $rr, 
  $qqx7: request_TT_golfer_name   FROM $qq, 
  $rrx7: respond_TT_golfer_name   FROM $rr, 
  $qqx8: request_TT_credit_card_type  FROM $qq, 
  $rrx8: respond_TT_credit_card_type  FROM $rr, 
  $qqx9: request_TT_credit_card_number  FROM $qq, 
  $rrx9: respond_TT_credit_card_number  FROM $rr, 
  $qqx10: request_TT_phone_number  FROM $qq, 
  $rrx10: respond_TT_phone_number  FROM $rr 
   
 
   
 DO   
  ADD $qqx1 PRECEDES $rrx1; 
   ADD $qqx2 PRECEDES $rrx2;  
  ADD $qqx3 PRECEDES $rrx3; 
  ADD $qqx4 PRECEDES $rrx4; 
  ADD $qqx5 PRECEDES $rrx5; 
   ADD $qqx6 PRECEDES $rrx6;  
  ADD $qqx7 PRECEDES $rrx7; 
  ADD $qqx8 PRECEDES $rrx8; 
  ADD $qqx9 PRECEDES $rrx9; 
   ADD $qqx10 PRECEDES $rrx10;  
   
   
 OD; 
OD; 
 
 
 
 
/* COORDINATE 23: Interaction between the TT IAA and the Scoreboard ILF,  
and nested COORDINATE with 5 ADDs representing 5 DETs */ 
 
 
COORDINATE    $ss: request  FROM TT, 
    $tt: respond2  FROM Scoreboard_ILF 
    
DO 
 
 COORDINATE 
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  $ssx1: request_scoreboard_golfer_name    FROM $ss, 
  $ttx1: respond_scoreboard_golfer_name    FROM $tt, 
  $ssx2: request_scoreboard_coursename   FROM $ss, 
  $ttx2: respond_scoreboard_coursename   FROM $tt, 
  $ssx3: request_scoreboard_date    FROM $ss, 
  $ttx3: respond_scoreboard_date    FROM $tt,  
  $ssx4: request_scoreboard_slope    FROM $ss, 
  $ttx4: respond_scoreboard_slope    FROM $tt, 
  $ssx5: request_scoreboard_score    FROM $ss, 
  $ttx5: respond_scoreboard_score    FROM $tt 
   
    
 DO   
  ADD $ssx1 PRECEDES $ttx1; 
   ADD $ssx2 PRECEDES $ttx2;  
  ADD $ssx3 PRECEDES $ttx3; 
  ADD $ssx4 PRECEDES $ttx4; 
  ADD $ssx5 PRECEDES $ttx5; 
     
 OD; 
OD; 
 
 
 
/* COORDINATE 24: Interaction between the TT IAA and the Merchandise EIF and  
nested COORDINATE with 3 ADDs representing 3 DETs */ 
 
 
COORDINATE   $uu: request   FROM TT, 
   $vv: respond3   FROM Merchandise_EIF 
    
DO 
 
 COORDINATE 
 
  $uux1: request_Merch_product_name    FROM $uu, 
  $vvx1: respond_Merch_product_name   FROM $vv, 
  $uux2: request_Merch_price     FROM $uu, 
  $vvx2: respond_Merch_price     FROM $vv, 
  $uux3: request_Merch_picture    FROM $uu, 
  $vvx3: respond_Merch_picture    FROM $vv  
     
 DO   
   ADD $uux1 PRECEDES $vvx1; 
    ADD $uux2 PRECEDES $vvx2;  
   ADD $uux3 PRECEDES $vvx3; 
     
   
 OD; 
OD;  
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